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The Application of Inverse Theory to Seamount Magnetism

Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego

Introduction

Theory I: finding a4 model. .. ..

ROBERT L. PARKER

LOREN SHURE!

Woods Hole Oceanographic Institute, Woods Hole, Massachussetts

JOHN A. HILDEBRAND
Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego

The traditional least squares method for modeling seamount magnetism is often unsatisfactory
because the models fail to reproduce the observations accurately. We describe an alternative
approach permitting a more complex internal structure, guaranteed to generate an external field in
close agreement with the observed anomaly. Potential field inverse problems like this one are fun-
damentally incapable of a unique solution. and some criterion is mandatory for picking a plausible
representative from the infinite-dimensional space of models all satisfying the data. Most of the
candidates are unacceptable geologically because they contain huge magnetic intensities or rapid
variations of magnetization on fine scales. To avoid such undesirable attributes, we construct the
simplest type of model: the one closest to a uniform solution as measured by the norm in a spe-
cially chosen Hilbert space of magnetization functions found by a procedure called seminorm
minimization. Because our solution is the most nearly uniform one we can say with certainty that
any other magnetization satisfying the data must be at least as complex as ours. The theory
accounts for the complicated shape of seamounts, representing the body by a covering of triangular
facets. We show that the special choice of Hilbert space allows the necessary volume integrals to be
reduced to surface integrals over the seamount surface, and we present numerical techniques for
their evaluation. Exact agreement with the magnetic data cannot be expected because of the error
of approximating the shape and because the measured fields contain noise of crustal. ionospheric,
and magnetospheric origin. We examine the potential size of the various error terms and find that
those caused by approximation of the shape are generally much smaller than the rest. The mean
magnetization is a vector that can in principle be discovered from exact knowledge of the external
field of the seamount: this vector is of primary importance for paleomagnetic work. We study the
question of how large the uncertainty in the mean vector may be, based on actual noise. as
opposed to exact, data; the uncertainty can be limited only by further assumptions about the inter-
nal magnetization. We choose to bound the rms intensity. In an application 1o a young seamount
in the Louisville Ridge chain we find that remarkably little nonuniformity is required to obtain
excellent agreement with the observed anomaly while the uniform magnetization gives a poor fit.
The paleopole position of ordinary least squares solution lies over 30° away from the geographic
north, but the pole derived from our seminorm minimizing model is very near the north pole as it
should be. A calculation of the sensitivity of the mean magnetization vector to the location of the
magnetic observations shows that the data on the perimeter of the survey were given the greatest
weight and suggests that enlargement of the survey area might further improve the reliability of the
results.
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1. INTRODUCTION

Ever since C. Darwin deduced the general subsidence of
the seafloor from his observations of coral atolls,
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seamounts is the best evidence for deep hot spots station-
ary in the mantle [Morgan, 1971], and the regular .ateral
spacing of these rows may indicate the presence of longi-
tudinal convection cells [Richter and Parsons, 1975]. The
statistics of seamount distribution has been used to pro-
vide information on the variability of tectonic activity
throughout recent geologic past [Batiza, 1982]. The
weight of the seamount is a load that deforms the ocean
crust, and analysis of the bathymetry of the seafloor
around a seamount yields estimates of the strength of the
oceanic lithosphere [McNutr and Menard, 1978] that con-
tributes to our understanding of the thermal evolution of
lithospheric plates [Warts er al., 1980].

The first quantitative geophysical studies of seamounts
concerned their magnetism. Vacquier [1962] developed a
method for calculating an average magnetization vector
using observations of the magnetic field anomaly and the
bathymetric contour of the scamount. This method
approximated the seamount body with rectangular prisms
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and assumed that all the prisms were of uniform magneti-
zation in order to calculate the average magnetization with
the minimum least squares error in the fit of the anomaly.
Talwani [1965] modified the least squares method by
represeniing the body as a collection of horizontal polygo-
nal laminas whose outlines followed the contours of the
body, and Plouff (1976] refined this method by increasing
the accuracy of the integration in the vertical direction.
The results from the least squares modeling program were
used for paleomagnetic study of seamounts [Uyeda and
R:chards, 1966, Richards et al., 1967, Vacquier and Uyeda,
1967), and as soon as the ideas of seafloor spreading
became accepted, such analyses were applied to the unrav-
eling of the history of the ocean basins {Francheteau et al.,
1970 Harrison er al., 1975. Gordon and Cox, 1980, Sager,
1983]. Despite widespread use and some suggestive
findings, the results of this program have been rather
disappointing. The scatter of paleopoles derived from
apparently homogeneous groups of seamounts is often
large, and the portion of the magnetic anomaly accounted
for by the model is often small.

We believe the generally unsatisfactory performance is
due in large measure to limitations of the least squares
method of analysis of the magnetic data. The interior of
the seamount is assumed to be uniformly magnetized
down to its base. the plane of the surrounding seafloor.
and below this level the magnetization is the same as in
the surrounding oceanic crust. In its barest form, the least
squares model contains just three unknown parameters:
the three components of the magnetization vector. It is
generally necessary to include as unknowns the parameters
of a local background field varying linearly across the sur-
vey region to correct for small errors in the computation
of the anomaly from total field measurements; this
increases the number of unknowns to six. Linearity of the
relation between magnetization and tl.  -bserved magnetic
anomalies permits parameter estimation by a least squares
solution of the overdetermined equations connecting the
model to the data. The underlying idea is that any
discrepancy between the predictions of the model and the
observed anomalies originates from uncorrected diurnal
variations, crustal magnetic fields, and so on that may be
treated as random, independent noise sources. Under
these circumstances the Gauss-Markov theorem justifies
the application of the least squares formulation by its
assertion that the true uniform magnetization will be
recovered if enough data are used. Yet when the
predicted field is subtracted from the observed one, the
residual never has the form of a random. uncorrelated
noise signal as it must if the conditions of the theorem are
to be satisfied. There are systematic, large-scale residual
fields concentrated around the seamount that remain
unaccounted for by the uniform model. This may happen
even when the seamount exhibits an anomaly of the sim-
plest form, with just one maximum, or when it is situated
on crust s0 young that no reversal can i..ve occurred in
the history of the body. It has long been recognized that
the pattern in the anomaly residual is indisputable evi-
dence for a more complex internal magnetization.

Several investigators have inferred variations in the
strength of internal magnetization using the pattern of
magnetic field anomaly residuals. Richards et al. [1967]

and Harrison [1971] observed that short-wavelength resi-
duals centered over the seamount top could be an indica-
tion of nonmagnetic rocks capping the seamount. They
modeled this by eliminating the uppermost bathymetric
layers from the model and were able 10 increase the
correspondence between the model predictions and the
observations. Emilia and Massey [1974] confirmed this
result by allowing their inversion program to vary the
magnetization amplitude of the model for each layer in the
seamount, although they found their method was unstable
if too many independent layers were used. Schimke and
Bufe [1968) obtained a magnetization for the cap of Chau-
tauqua Seamount by inverting the residual anomaly calcu-
lated for the whole seamount. The sum of the cap and
the whole seamount magnetization indicated that the cap
may be more weakly magnetized than the remainder of
the seamount body [Francheteau et al., 1968). Blakely and
Christiansen [1978) used the pattern of magnetic residuals
at the Mount Shasta Volcano to delineate lateral variations
in internal magnetization. They observed that the western
portion of Mount Shasta may have greater magnetization
than its eastern portion and concluded that nonuniform
magnetization could lead to erroneous paleomagnetic poles
using the least squares method. Likewise, Kodama and
Uveda [1979) used magnetic field inversion to deduced
that the eastern portion of Oshima Volcano may have
lower magnetization than the rest of the body. To explain
this pattern, they presented geological evidence for an
older volcanic edifice hidden beneath the eastern part of
the volcano.

Other workers have attempted to account for seamount
magnelic anomaly residuals by assuming that portions of
the seamount contain both normal and reversely magne-
tized rocks. Sager et al. [1982] assumed the top kilometer
of Nagata Seamount was of reversed polarity, opposite in
direction and equal in magnitude to the remainder of the
body. Th y divided the body into normal and reversed
sections by introducing a negative volume for the assumed
reversed portion of the bodv, resulting in an improved
goodness of fit between the calculated and the observed
anomalies. Likewise, for a collection of seamounts on the
Cocos plate, McNurr [1986] used a modified least squares
method allowing for solution of up to nine distinct regions
of magnetization. The number and the location of the
magnetically distinct regions were specified before inver-
sion, and in two cases the seamounts appeared to have
regions of both normal and reversed polarity. Naturally,
including more degrees of freedom in the models
improves the fit, but the significance of any conclusions
obtained is questionable in view of the arbitrariness
involved in the subdivision procedure.

Another approach to removing the effect of nonuniform
magnetization is to smooth the magnetic field anomaly
before atternpting inversion for the magnetization. This
approach has been used for complicated magnetic
anomalies where short-wavelength components may be
imposed on a longer-wavelength anomaly. The justifying
assumption for smoothing is that the volume of rocks
creating the short wavelength anomaties is small in com-
parison to the volume creating the long-wavelength anom-
aly Miles and Roberts [1981] used an orthogonal profile
technique to smooth the magnetic anomaly of Rosemary
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Bank Seamount before inverting for the least squares
magnetization. Sager [1984] used an upward continuation
algorithm to smooth the magnetic field anomaly of Abbott
Seamount. He argued that the advantage of upward con-
tinuation is that it is physically equivalent to increasing the
height of the plane of the magnetic observations, and
therefore it gives a valid estimate of the magnetization
amplitude. Gardner et al. [1984) used the same procedure
to continue upward the magnetic anomaly of Shimada
Seamount by 4 km before attempting inversion with the
least squares method. A set of field data is not associated
with a unique upward continuation, and so numerical
upward continuation involves its own (often unstated)
assumptions about the true magnetic field. The
differences between the various upward continued ver-
sions of the data correspond exactly to the differences in
the ascribed magnetizations of the various models: the
inherent ambiguity cannot be avoided by this kind of
preprocessing.

It is clear that the presence of mixed polarity in a
seamount may be a source of error in the calculation of its
paleomagnetic pole. To demonstrate this, Lumb et al.
(1973) constructed the synthetic magnetic anomaly for a
seamount model with mixed polarity and showed that an
inaccurate estimate of the paleopole was obtained if a
homogeneous magnetization was assumed. They conse-
quently used mixed polarity magnetization to explain the
scatter of paleopoles obtained from inversion of the mag-
netic anomalies of the Cook Islands. In contrast, Sager
[1983] argued that seamounts of mixed polarity may yield
accurate paleopoles if one polarity clearly dominates the
body and the effect of the other polarity is removed by
upward continuation. This is probably true for Abbott
Seamount [Sager, 1984] because of the agreement
between its magnelic paleolatitude and the latitude of the
Hawaiian hot spot. However, there is a significant
discrepancy between the paleopole calculated for Shimada
Seamount [Gardner er al., 1984] and the pole position near
the north pole implied by its young age. There are several
cases of disagreement between the magnetization inferred
from least squares magnetic field inversion and the mag-
netization measured from rock samples. At Cobb
Seamount, Merrill and Burns [1972] reported difficulty in
reconciling the paleopole obtained from magnetic field
inversion and that measured from summit rock samples.
Similarly. the magnetic field inversion for Suiko Seamount
(Kodama er al., 1978] yields a paleolatitude significantly
different from that measured for rocks obtained from
Suiko during Deep Sea Drilling Project leg S5 [Kono,
1977].  Similarly, the magnetic field inversion for the
Oshima Volcano [Kodama and Useda, 1979] provides a
magnetization direction that differs from paleomagnetic
measurements taken on surface volcanic rocks.

These inconsistencies point to the need for a more gen-
eral magnetization model. The fundamental difficulty fac-
ing anyone who wishes to introduce a more complex struc-
ture is the nonunigueness of the inverse problem. Even
when a magnetic field caused by internal magnetization is
known exactly at every point outside the seamount. there
are infinitely many other magnetizations gencrating pre-
cisely the same extenor field. To get some idea of how
large a family of models is compatible with every exterior

field, consider f, an arbitrary continuously differentiable
function, vanishing on 9 V', the boundary of the seamount.
If a magnetization vector is defined by M =/, it is
easily shown by application of Gauss' theorem that the
exterior field associated with M is identically zero. Thus if
M, generates a particular exterior field, M + M, will cause
.an identical one for every f of the specified form. There-
fore, on the basis of the magnetic field data alone, it is
impossible to distinguish between an enormous variety of
different models. To overcome this basic ambiguity, some
restriction must be introduced from our knowledge of
geology and geophysics to limit the amount of variability.
This is just what the uniform magnetization assumption
does in a heavy-handed way.

Because the magnetic anomaly data are consistent with
magnetizations of infinite complexity, we must try 1o
avoid being misled into believing some accidental feature
of a mode! is truly demanded in the solution. Our
approach in this paper is to construct the magnetization
model matching the data that is as close as possible to a
uniform model. The details of what we mean by "close-
ness' and the techniques for achieving the desired objec-
tive will be discussed in the next section. Having found
the model with the minimum amount of nonuniformity,
we know the true internal magnetization must possess that
degree of nonuniformity, or more. This is useful informa-
tion because it tells us something about the complexity of
the body.

Nonuniform seamount magnetization may be produced
by several factors: (1) the duration of seamount volcan-
ism, (2) the variety of seamount rock types with different
magnetization characteristics, and (3) the structural com-
plexity of seamounts. The duration of seamount volcan-
ism is not well known, but estimates range from as short
as a few hundred thousand years [Duncan and McDougall,
1976} to as long as 10 or 20 million years [Menard, 1964;
McDougall and Schmincke, 1976]. These time spans are
long in comparison to the time for secular variation of the
geomagnetic field, implying that the magnetization of indi-
vidual seamount lava flows may be deflected by several
degrees but that the average magnetization will represent
an axial dipole field. The duration of seamount volcanism
is short in comparison to the frequency of geomagnetic
field reversals during the Cretaceous [Kent and Gradstein,
1985] but is long in compaison to the frequency of rever-
sals during the last 5 million years [Lowriec and Kent,
1983]. The probability of spanning a field reversal during
construction is therefore higher for Tertiary scamounts
than for Cretaceous seamounts, and this allows Cretaceous
seamounts to be more easily modeled. Seamounts with
episodic or post erosional volcanism may be constructed of
rocks with imprints from geomagnetic fields of different
periods and locations. For example, Rice et al. [1980]
reported that as much as 32% of Bermuda is madc of
mid-Tertiary sills that were intruded into a Cretaceous
edifice. Additionally, for the southern Line Islands it was
reported that both Eocene and Late Cretaceous volcanism
are present within the seamount edifices [Haggertv ot al..
1982]. Seamount nonuniform magnetization may also
result from the variety of rock types involved in their con-
struction.  Sean*~unt rocks such as hyaloclastites, pillow
lavas, dikes. ana gabbros may differ significantly in their
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magnetic properties. Hyaloclastites are relatively nonmag-
netic rocks composed of ash, sand, and broken pillow
rinds associated with explosive underwater volcanism
[McBirney, 1971, Lonsdale and Batiza, 1980). Harrison
[1971] proposed that the weakly magnetized top of a
seamount may be composed of hyaloclastites. Likewise,
Harrison and Ball [1975)] observed low magnetization at an
exposed seamount composed predominantly of hyaloclas-
tite tuff. Higher magnetization will be present in
seamount basalts, such as pillow lavas, and dikes as well
as in seamount gabbros. It is not known what fractions of
the seamournt bodies are composed of hyaloclastites rela-
tive to basalts or gabbros. However, it has been put for-
ward that large amounts of these materials may be found
on the flanks [Lonsdale and Batiza, 1980] and summits
[Batiza et al., 1984] of seamounts. Structural complexity
may be another factor leading to nonuniform seamount
magnetization. Seamounts may contain large magma
chambers or conduits, and these bodies may require a few
hundred thousand years to cool because of the low ther-
mal conductivity typical of basalt [Grossling, 1970]. Such a
body may partially cool in a polarity interval opposite to
the rest of the seamount or may record magnetization
changes due to geomagnetic secular variation or grain size
variation. It has been proposed that tilting of the flanks of
seamounts may occur as a result of inflation of magma
chambers [Staudigel and Schmincke, 1984] resuiting in
changes in magnetization inclination. Likewise, dike and
rift zones may have distinct magnetic signatures, and they
are particularly prominent features on large seamounts and
guyots.

The existence of a large family of alternative models
each capable of exactly matching the magnetic anomaly
certainly means that it is impossible to obtain an exact
description of the interior magnetization from these data.
Furthermore, the data will usually not allow us to decide
unambiguously between compeling geological speculations.
Therefore it is important to identify any features of a
model that can in principle be strictly related to the mag-
netic anomaly. The dipole moment of the seamount can
be computed from its exterior field if this is exactly
known. The dipole moment is especially useful geophysi-
cally because, after division by the volume of the
seamount, it is the vector of average magnetization. This
is the vector most diagnostic of the mean geomagnetic
field direction during the formation of the seamount, and
so it is a most important quantity for paleomagnetic
research. As it happens, when we compute the most
nearly uniform magnetization, the mean magnetization is
automatically separated from the nonuniform remainder;
it is then easy to find the paleomagnetic pole associated
with the most uniform seamount. The actual dipole
moment and our estimate will differ because the magnetic
data are incomplete and imprecise. A key question is.
How far can the true mean magnetization differ from the
vector associated with our model? We develop a theory to
provide the answer. We require an upper limit on the
intensity of magnetization of the rocks of the seamount;
otherwise, the actual difference between the actual mean
magnetization and the uniform vector may be arbitrarily
‘arge. Preliminary calculations with the theory indicate
that more work needs to be donc on this topic because the

estimated uncertainties remain disappointingly large. The
focus of our current theoretical research is the refinement
of the bounds on the uncertainty.

The plan of this paper is as follows. Section 2 gives the
mathematical details concerning the construction of a most
nearly uniform magnetization. For this problem we have
chosen a Hilbert space setting in which the norm of the
space is proportional to the rms magnetization. In this
space the distance between two models is the norm of
their difference. We decompose an arbitrary magnetiza-
tion into two parts: a uniform magnetization (a vector of
constant size and magnitude at every interior point of the
seamount) and another, nonuniform part that may vary in
magnitude and direction. The model we seek is the one
that has the smallest nonuniform component and satisfies
the measurements of the magnetic field anomaly. The
norm of the nonuniform portion is a seminorm of the
magnetization in the language of functional analysis, and
so we call the modeling process seminorm minimization in
contrast with many geophysical inversion techniques which
are model norm minimizations. Although it is always pos-
sible in principle to obtain exact agreement between the
predictions of the model and the measurements, we
should allow for misfit because of noise in the measure-
ments and approximations in the theory. Section 3 of the
paper deals with the various approximations necessitated
by practical calculation and measurement. The shape of
the seamount cannot be represented exactly in any actual
computation, so we have chosen an approximation for it
in terms of an enclosing set of triangular facets on a flat
base. We estimate the magnitude of the errors introduced
by this approximation and show how they may be kept
well below the uncertainties associated with the magnetic
observations. To carry out the theory of section 2, a large
number of volume integrals must be carried out over the
seamount. Even with our simplified body those integrals
cannot be performed in closed form, and therefore we
adopt a scheme for numerical approximation. Here one of
the advantages of our particular Hilbert space formulation
becomes evident: the volume integrals can be transformed
into surface integrals by means of Gauss’ theorem.
Despite this the numerical work in obtaining the necessary
accuracy is great, we describe efficient numerical processes
for computing the surface integrals. Section 4 treats the
question of estimating the uncertainty in the uniform part
of the magnetization model. We show how a knowledge
of the maximum permissible intensity of magnetization
can be convertec into a bound on the uncertainty in the
average magnetization. In section 5 the theory is applied
to a seamount in the South Pacific Ocean on the Louisville
Ridge seamount chain. Ordinary least squares modeling
of this seamount is unsatisfactory in two ways. First, the
predicted anomaly has the wrong shape and magnitude.
resulting in an rms misfit of 269 nT to an anomaly with
rms magnitude of less than 600 nT. Second, the calcu-
lated paleomagnetic pole position is more than 30° from
the north geographic pole, a displacement most improb-
able for a young seamount, as this one is by the evidence
of radiometric dating and its position in the Louisville
chain  Application of our method overcomes both
deficiencies: from magnetic field measurements on the
approach to the seamount we estimate that the local



crustal fields contribute about 30 nT to an anomaly with a
peak magnitude of over 1200 nT; we find the most nearly
uniform model with this rms misfit. Its pole position is
within 7° of the geographic north pole. The uncertainty
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ascribed to the pole position by the error theory appears to
be much too large, and reasons for this discrepancy are
put forward.

Most readers will not require a deep understanding of
the mathematical derivations or of the numerical tech-
niques that lie behind a successful application of the
theory. To them we suggest the following strategy: first,
go quickly through the next section to get an idea of the
theoretical framework; then skip to section 5 where an
actual magnetic survey is analyzed with the method. In
the application we have included signposts to the earlier
material in the event that the reader wishes to follow up
any particular point in greater detail.

2. THeORY I: FINDING A MODEL

This section explains how to find the most nearly uni-
form magnetization within a seamount consistent with
magnetic field data measured in its vicinity. The funda-
mental geological assumptions are that the seamount was
formed by the outpouring of lavas onto a previously exist-
ing, relatively level crust and that the new material did not
cause the older crust below to become strongly remagnet-
1ized. Our model seamount does not have large magnetic
"roots"; instead, the significant magnetic sources lie above
the level of the surrounding seafloor. Naturally, the mag-
netic material around the seamount and under it must
contribute 1o the measured fields a1 the sea surface.
These signals are noise as far as we are concerned, and we
allow for them by permitting mismatch between the pred-
ictions of the model and the observations.

The first task is to solve the forward problem, that is.
the calculation of the predicted magnetic fields from a
known mode! of magnetization. Almost all marine mag-
netic measurements are of the total field intensity |B],
which we shall assume have been reduced to total field
anomalies by subtraction of a local. total field computed
from a global field model. As we have already noted in
the introduction, it may be necessary to include in our
model parameters describing the variation of the global
field over the survey area. Because the contribution of the
seamount 1o the total observed field is small. the resultant
anomaly is well approximated by

ABl =8B, - AB

where ﬁ(. 1s a unit vector in the direction of the ambient
field at the site. and AB is the field vector assaciated with
local sources. Suppose for the moment that the entire
anomaly is caused by the magnetization of the scamount:
then the anomaly found at r, the position of an observer,
is just

..\[B(ri(=f(3(r.s)-M(s)(/‘s (n
I}
where M(s) s the magnetization vector at & pomt s «

in the body and G(r. <) s Green's function tor the prob-
lem, namely.

This function gives the field component at r in the direc-
tion of B, owing to an elementary dipole at s. Let us
recognize explicitly in the notation the important fact that
measurements are obtained at only a finite number of
placesr,.r;, ....ry. We simplify (1) as foliows:

d,=fG,(s)~M(s)d3s J=1L2....N (3

]

Here G, (s) stands for G(r,,s), and d, is an abbreviation
for the jth datum. A|B(r,)|. Equations (2) and (3) con-
stitute a complete formal solution to the forward problem:
a practical solution requires in addition efficient numerical
procedures for the evaluation of the volume integrals over
the complicated shape of the seamount. This question is
deferred until section 3, because we shall need to evaluate
other more involved functions over the same domain 10
solve the inverse problem.

At this point we introduce the notion of distance
between two models of magnetization, so that there is a
definite meaning to the idea that some models are closer
together than others. A natural mathematical setting for
this discussion is a normed linear vector space X contain-
ing as elements all the magnetization functions that might
occur inside }: any magnetization M is a single element in
X . The distance between any two efements M and N of .¥
is the norm of their difference I™M — NIi. Equation (3) is
interpreted as saying that each observation is given by a
linear functional of M. There are several normed vector
spaces that might be suitable in this context. In the study
of marine magnetic anomalies, it is traditional to reduce
the vector-valued magnetization to a scalar function of
position times a constant unit vector, in other words. to
consider only magnetizations with constant direction. One
might at first suppose that the restriction to unidirectional
magnetization models might make it impossible to fit the
data properly. particularly if the "wrong' direction were
chosen, but it can be proved that such models are capable
of satisfying any finite data set, no matter what direction is
used. The proof follows from the linear independence of
the associated representers. something established by the
methods used in appendix A. Nonetheless, we believe it
1S important not to make restrictive assumptions about the
magnetization of the seamount. and so we employ a space
that allows complete freedom for the magnetization func-
tions that are its elements.

Parker [1971] proposed the use in this problem of a Hil-
bert space, which we shall call P here clements are
vectar-valued functions of position s € 1. for example.
magnetizations.  Technically, an element of P s a certain
equivalence class of functions brought into being by the
completion of the space. we shall not dwell on these
matters here. The mner product of the space is

M. N) = f\l(s)'N(s)d"s (4)
i

The norm of an element s
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]

Mif = M, M)

If M) d's
[}

It 1M} is normalized by the square root of the volume of
the seamount, it is just the rms magnetization. There are
a number of reasons why a Hilbert space is a convenient
choice for the linear vector space:; the principal one is that
optimization problems (minimization of a norm, for
example) are particularly simple in such spaces because
they have unique solutions. linearly related to the data in
many cases.

Let us first assume that the data d;, ds. ..., d\ are to be
satisfied exactly and that the required uniform magnetiza-
tion 1s already known: we call it U € P. Notice that U is
not simply a vector in ordinary space. it is a vector-valued
function throughout the region }° that is constant in mag-
nitude and direction at every point. Equation (4) suggests
that we can write (3) as an inner product:

d =1G,. M J=1.2....N

I

(5)

This is possible because for observations outside b, every
G . has a bounded norm and is therefore a valid element
of P. Such elements are called representers in the
mathematical hterature, a name preferred by the authors
to the geophysical term "data kernels.” Stated in the con-
text of the Hilbert space P, our problem can be posed as
follows: we must find M satistying (5) such that IIM — Ul
is as small as possible. This corresponds to making our
model as close to a particular uniform model as it can be,
in the sense of the norm of P. To solve the problem,
write the nonuniform part of the magnetization as R:

R=M-U 6)
and take the tnner product with G, - from (5) we have
d -G, U= (G .R) J=12...N N

Since everything on the left is known, the problem is to
find the clement R of smallest norm obeying a given finite
collecion of inner product constraints, The solution to
this kind of optimization problem has appeared in the geo-
physical literature many times le.g.. Backus, 1970: Parker.
1977). For completeness we sketch the derivation here.
We show in Appendix A that the representers G, where
J=1.2..... N, are linearly independent. therefore they
form the basis for an NV-dimensional. and therefore
closed, subspace of P, which we call G. The decomposi-
tion theorem for Hilbert spaces [Luenberger, 1969] states
that any element of P may be written as a sum of two
parts, one lying in G and the other in G*, with the sub-
space of elements orthogonal to the elements of G called
the orthogonal complement of . We decompose R in
this way:

R=S+T ®)

where S € ¢ and T € G*: obviously, (§.T)= 0, and

then it follows that
HRI = 0SH° + N2 (9)

When (8) is substituted into (7) we see that only the S
component of R affects the fit to the data, because
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(G,.T) = 0 for all j; hence we can choose the part of R
lying in G' at will. Equation (9) shows us that we should
make T the zero element of P, for this gives us the smal-
lest norm of all. Now we must adjust S to obtain agree-
ment with the data. Because the elements G, form a basis
for G,

v
S=Y «, G,
1=

We have concluded that T = 0, and we know from (§)
that R = S: from (6), M= U + S, and so the magnetiza-
tion nearest U satisfyving the data is
A
M“=U+Z(1/G, (10)
=1
The decomposition theorem has reduced the problem aof
finding an optimum element from a search in an infinite-
dimensional space 10 a problem in 4 finite number of
unknowns. All that remains to be done is to find the
expansion coefficients «,. and the model nearest U has
been found. This is accomplished by substituting (10)
into (5): we obtain the system of linear equations

\
Sl =d’ k=12 ...N
1=

where

d'=d - G .U)

and

Iy =(G,.G,) (1

The matrix I' of all possible pairs of inner products of the
representers is fundamental in much of the theory: it is
called the Gram matrix. The representers are linearly
independent, from which it follows that the Gram matrix
is nonsingular [Luenberger. 19691, and so there is a unique
solution to the linear system for the .

In reality we do not know the direction nor the intensity
of the uniform magnetization that best approximates the
interior magnetization: determination of U is one of the
most important goals of our investigation. Also we must
not demand precise agreement between the predictions of
the theory and the observations. The complete solution to
the problem will be developed in two stages: first we admit
U to be unknown. then we allow misfit.

To determine the unknown U, imagine making a guess
for that elemen., solving (7) for the smallest R, and then
repeating the process for a series of different guesses.
Clearly the best solution of the series would be the one
that causes R to be smallest, for then it would be the
nearest one to some uniform model in the set of guess
models. To solve the general problem. we analyze this
hypothetical optimization problem over the space of all
possible elements U. In fact U belongs 1o a three-
dimensional subspace of P. because any such element can
be written

U=gX +8X;+8X;

where X, X, and X; are fixed elements of P representing
uniform magnetizations of unit intensity in three mutually
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perpendicular directions. From (10) the most nearly uni-
form solution takes the form

3 N
M=7 8.X,+ ¥ oG, 12)
=l y=1

We now consider both the o and 8 coefficients to be free
in constructing 1 model that fits the data:

3 N
G,. [T B.X, + T oG, D) = 4, (13)
n=1 k=1

But in addition we want to minimize the distance squared
between U and M:

A N
M = U= ([ «,G,1, [ oG\ D (14)
a=1 h=1

These expressions are more easily grasped if we take all
the sums outside the inner products and introduce matrix
notation:

AB+T a=d (139
M-UbF=a’Ta«a (14')

Here I' is the Gram matrix and the meaning of the vectors
a € R*. 8 € R and d € RY is obvious: the components
of the N by 3 matrix A4 are given by

A, = G,.X,)

The matrix 4 contains the solution to the forward prob-
lem for uniform seamounts because its elements are the
magnetic fields at the observation positions due to unit
uniform magnetizations in the three orthogonal axis direc-
tions. we call 4 the Green matrix. Only this matrix is
needed in the conventional least squares fitting process.

The simplest way to minimize (14") with (13') as a con-
straint is to introduce a set of v Lagrange multipliers A .
A>, ... Ay. which we can collapse into the vector A € RY.
and minimize the unconstrained functional

a’'Ta+ AN [AB+T1 a-d]

over the vectors a, 8, and A. The solution requires only
elementary calculus; we eliminate A and then solve a
linear system of equations for the coefficients, most neatly

written:
' A4 @ d .
4" ol |sl=1o (3)

where O is an 3 by 3 matrix of zeros and 0 is a 3-vector
of zeros. The necessary and sufficient condition that (15)
has a unique solution is that the projections of the ele-
ments X, into the subspace G spanned by the

representers  should be  linearly independent  or
equivalently that
G, Y p.X)0=0 ;=12 ..N

only if all g8, are sero. Unfortunately this is not true in
general. for example, if all the observations lie in the same
plane as B, and the plane is a plane of symmetry of the
seamount, then the condition does not hold. In such a
geometry, the daty contan insufficient information to
decide between members of a subspace of uniform com-

ponents each of which yields an equally small (RIl. Natur-
ally, such highly symmetric situations will never arise in
practice, although the reader may have guessed that we
stumbled on such a case in tests with artificial models.

After (15) is solved the vectors a and 8 are put into
the expansion (equation (12)), and the desired most-
uniform model results. We call the most nearly uniform
solution M, and the associsted uniform and nonuniform
pieces U. and R.. From the perspective of functional
analysis, the quantity we are minimizing is the norm of
the projection of the magnetization onto the orthogonal
complement of the three-dimensional subspace of uniform
magnetizations. Thus we are performing a regularization
of the problem in which i[R.il is a seminorm of M {Luen-
berger, 1969]. A seminorm is a functional possessing all
the properties of an ordinary norm save one: HR.ii can
vanish when M is not the zero element of P. The optimi-
zation problem we have solved is called seminorm minimi-
zation. One nice general property is that the part of the
solution lying in the subspace penalized by the norm (the
nonuniform magnetization) is orthogonal to the other part
of the seminorm minimizing solution (the uniform part).
Any portion of the solution lying in the subspace spanned
by the X, is drawn from U, and therefore it is not found
in R. where it would only increase the seminorm unneces-
sarily.

A final refinement to the theory allows for some
disagreement between the predictions of our model and
the observations. We determine the model nearest to a
uniform magnetization but fitting the data to a precision
dictated by the amplitude of the noise in the observations.
For computational convenience we turn to the Euclidean
distance or two-norm as a measure of the misfit between
model predictions and the data. The rms field arising
from crustal sources not in the seamount and other
extraneous signals can be estimated by examining mag-
netic data obtained in the survey region but far enough
away from the seamount for its influence to be negligible.
Another source of uncertainty arises from the approxima-
tion of the seamount’s shape. we shall treat this factor in
detail in the next section.

The discrepancy between observation and model predic-
tion should be no more than the magnitude of the overall
estimated uncertainty. Therefore (5) is replaced by

N

Y {4 - G, MP<S (16)

11
where S/N” is the estimated rms noise. This condition
insures that the seamount we find will be the most uni-
form of all those in satisfactory accord with the magnetic
field observations,

The arguments given earlier using the Decomposition
Theorem apply equally well here: M must take the form
given in (12) so that the optimization problem is reduced
to finding the vectors a and 8. In terms of these (16)
hecomes

HAB+Ta—-dl’g s’ an
This censtraint appears difficult because it is an inequality.

but it is not hard to show that equality applies for any nor-
mal data set. The John multiplicr theorem [see Snuth,
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1974, chap. 3] provides the technique for minimizing a
functional subject to inequality constraints. The idea is
almost identical to the more familiar method of Lagrange
multipliers: the inequality constraints are appended to the
functional under variation. The multiplicative factors
behave as they do with equality constraints, but the sign
of the multipliers is fixed, and for each one there is an
additional "complementary slackness condition." In this
particular problem there is just one multiplier, 4 2 0. and
we minimize the functional

a' Ta+uldB+T a-—dif (18)
over all vectors o and B8 such that
pwliag+Ta—~di'=81=0 (19)

In the complementary slackness condition {equation (19)),
either the factor in brackets vanishes. and then equality
applies in (17), or u is zero. If i vanishes it is clear that
(18) has its only minimum at « = 0, since [* is positive
definite. This corresponds to an exactly uniform magneti-
zation. The motivation for our theory is the fact that a
totally uniform body cannot fit the magnetic data to the
necessary precision, and so normally u is nonzero. We
conclude, therefore, that equality is achieved in (17) so
that (19} may be obeyed. The conditions of the John
multiplier theorem apply at any local minimum of the
functional. but because the norm is a convex functional,
and the constraint (17) constitutes a convex set of points,
any local minimum must also be the giobal minimizer of
the functional by a well-known property of convexity
[Luenberger. 1969].

It may be helpful to interpret the minimization of (18)
as an intermediate problem lying between two extremes:
the conventional least squares fitting by a uniform body
when u tends to zero and the construction of an exactly
fitting mode! when i becomes large. In the latter limit,
the solution is the one that possesses the smallest nonuni-
form component. it has no particular relation to the smal-
lest norm model.

To find the minimum, we differentiate (18) with respect
10 «. . and u in the usual way; after some rearrangement
the equations derived from variation of « and g8 can be

written
o d
gl=1o

which is a linear system if u is fixed. In contrast to the
situation with precisely matching data, we find that the
multiplier u cannot easily be climinated. To find u we
must appeal to (17) taking the equality; a little algebra
simplifies the condition to

Hu+l 4

Y 20

w el = 82 02N

In outline the solution of the problem proceeds in this
way: the vector « may be regarded as a known function of
w through the solution of (20) (assuming the symmetry of
the problem allows a unique solution): then (21) is a non-
linear equation for u which we may write

Flu)=§°

After some manipulation we can find an explicit expres-
sion for the derivative of F:

(22}

?de' 20 Ha)! Wl 4T + A4 HA) "4 (He)
n
where the matrix H is defined by

H={/p+1)"!

The positive definiteness of I' insures the same property
for the factor in brackets when u > 0. from which it fol-
lows that dF/du is always negative. Thus the solution to
(22) is unique if it exists. [t may be verified that as
u — oo F(u)— 0, which is consistent with the idea that
this limit corresponds to the problem of finding a magneti-
zation fitting the data exactly. The maximum F occurs as
u — 0. corresponding to a = 0 and the problem of least
squares fitting a uniform model. The value of u associ-
ated with a particular S? < F(0) can be found by iteration
with Newton's method, which always converges if the
starting approximation is less than the true value of u:
this follows from d*F/du? > 0. a result requiring heavy
algebra to obtain. In practice, having found a value of u
that yields plausible misfits to the data, we usually sweep
through a range of values in its vicinity to examine the
different solutions.

With inexact fitting there is an interpretation of the
coefficients « that has no counterpart in the analysis of
precise data: the equations obtained upon variation of the
functional with @ can be expressed as

a=uld — (48 + Ta)]
or
a,=pnld - G, M)]

Since the term in brackets is the discrepancy between the
predictions of the model and the observations. this equa-
tion says that the individual misfits to the data are each
proportional to an expansion coefficient of R in the basis
of representers.

The last matter to be dealt with in this section is the
inclusion of the corrections 1o the ambient field to allow
for inaccuracies of the main field model. We can do no
better than the traditional treatment and allow three
further unknown parameters that correct for the presence
of 4 linear variation of the ambient field over the survey
region. In place of (5) the theoretical prediction from the
model takes the form

d=vyo+y 1, + (G, M) J=12. N

where y is a horizontal vector (the gradient of the
ambient correctioni) and y, is the unknown offset of the
ambient field from the main field model. Formally this is
just an inner product on another Hilbert space P' whose
elements consist of ordered triples [p:q:. F] where p is
real number, q 1s a horizontal vector, and F is an element
in P. Then the associated inner product forF'. G € P’ is

F'.GYV={[p.q.Fl [s:t: G
=ps+q-t+ (F.G)

The development proceeds in exactly the same way in the
new space waen the representers for the anomaly data are
chosen to be

G,'=

(t.r..G,]
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and the origin of coordinates is in the sea surface, so that 90( R oo,
r, . the position vector of the jth observation point, is hor- g0l o
izontal. In P’ the completely uniform seamount is one of b L
the form {p.q.B8 X, + 8.X: + 8:X; ). then all the equa- 70 N
tions derived earlier apply without change. Now the 6o
coefficient vector in the matrix equations 8 lies in R x
while a is unchanged in dimension and meaning. g 50 ,
N 40 . ’
3. APPROXIMATIONS ¥ i ; | ‘
In this section we explain the nature of the approxima-
. X 20 ‘ o3
tions and show that the errors introduced by them can be ! oe
kept to acceptably low levels in comparison to other 10 T ;
sources of uncertainty in the data. The first question we U‘; o
address is the calculation of the Gram matrix elements. 5! 20 40 60 8O
The definition of the representers from (2), together with Vertex angle 8,
the inner product of P from (4) and the Gram matrix  Fig 2 Shape factor @07 of cquation 124) for trangles two of

from (11), gives an explicit expression for an element of
I':
. MK ) f 1
I, =|— f B, VV——~
| J Ir —s|

1

(23)
Ir,—s|

B,-vv d’s
Here ¥V means V. differentiation with respect to s: we
have used the fact that

v, 1

Ir—s| Ve

Ir —s|

After we have taken advantage of the symmetry of [
there are V(N + 1)/2 integrals like this to be evaluated: a
simular set of 3N integrals is required to find the elements
of the Green matrix 4. Because NV is (vpically 100 or
more, many thousands of integrals must be carried out
Several approximations are required in order to caleulate
these numbers.

The region 17 in (23) is the set of points defining the
seamount. We cannot know the exact shape of the bot-
tom boundary of }* where the newer lavas of the voleanie
body lie in contact with the original crust.  We approv-
mate this surface by a horizontal plane at the mean lesvel
of the surrounding terran.  The upper surface of the
seamount is known in considerable detail. but it too must
be approximated in our calculations because 1t s S0 com-
plex. [t is important that the approximation can be
formed from samples of the bathymetry not disposed in
any regular manner because we shall show that the com-
putationally optimal spacing  of  bathymetry  camples
depends directly on the water depth: topography in shallow
water should be sampled more densely than that in deep

() (b} » () A
— L — %
k - e
R T
- -
T
-~ & A et
~
Frig T tad A Collection of 21 pomits placed at random i the
plene CAE A trangular ressellation of them hased upon B arson

[1982] dgonthm for the most nearh syutlaferar configutation
At ditiferent tessellition of the samn POt

W)

whose vertex angles are #; and #5110 degrees. All possible trian-
gles are covered by this diggram

water. Our approach has been o represent the surface of
the seamount by a tessellation of triangular facets: the
facets are the plane interpolations of sample points drawn
from the bathymetric data.  As suggested by Figure |,
there are many ways in which a given arbitrary collection
of points in the plane muy be connected together to form
nonoverlapping  triangles. and each of these vields a
different interpolation.  In appendix B we show that the
rms error of the interpolation can be deduced trom the
power spectrum of the topography.  For young scafloor,
Fox and Haves [1985] find that a power law is a good
description of the spectrum over a large range of wave
numbers, and as proved in the appendin. this leads 1o the
following expression for the rms interpolation error aver-
aged over a triangular tacet 7

AT = A L e (24

where A 1s the area of 7007 s g tactor depending on
the triangle’s shape, and no 70 and 1 are constanis,
values computed from the analysis of Fox and Haves are
n=248 and "= 133 m when £, which v an arbitran
length scale. s set tr T kme The shape factor @07 given
by equation (BIOV 18 contoured m Figure 2 For a tined
arca, the equilateral triangle produces the least error with
G, .= 03200 but any triangle whose angles all exceed 20
15 assoctated with an error only shghtly larger. for then
@ < 0575 Table 1 gives the rms error for equilateral try-
angles of vanous sizes. Although senous errors will not
be incurred unless o triangle s severely elongated. the
analysis mdicates that the cells of the tessellation should
be chasen to be as ncarly cquiliateral as possible An
automatic procedure for doing this was given by Banon
{1982]. the method s based upon a theorem of € -F
Delaunay stating that a triangufar tessellation may be
arranged so that the circumcircle of every triangle contains
no vertex of any other triangle of the set. A shghthy
modified version of Watson's program has proved 1o be
highly sausfactory it is efficient, is rehiable, and vields sen-
sible tessellations, Tor example, the one in Figure 1b

The error in mterpolation of the topography discussed
above s secondary to the consequent error introduced m
the computed magnetic anomaly by the approvimation of
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TABLE 1. Rms Error of Interpolation by Equilateral Triangles

Side, m 87 ,.m
S0 0.70
100 1.2
200 20
300 2.6
500 39
1000 64
1500 87
2000 10.7
2500 126
3000 14.4

Root-mean-square error in topography after interpolation
by an equilateral triangle with the given side length. The
values are caleulated from equation (24) and the constants of
Fox and Hayes [1985]

the true surface of the seamount by an artificially smooth
one. This factor will be treated as a noise term. that is, a
part of the measured field not fitted by the model. We
have no control over the contribution from approximation
of the base of the seamount by a level plane, but we shall
show that this error is not large in comparison with effects
of diurnal variations and residual crustal fields. The
approximation of the upper surface can be made as accu-
rate as we desire by choosing the triangle size sufficiently
small. It would be wasteful of computing resources, how-
ever. 1o reduce this error far below those from other
sources.

The magnetic effect of the lower surface will be
modeled by a thin horizontal layer located at the level of
the surrounding crust with variable thickness &. the
difference between the true topography and that of the
model. The same kind of mode! is used for the upper
boundary, but we choose the level to be that of the shal-
lowest part of the seamount: this safely overestimates the
noise signal. We simplify the magnetization in the layer
by using a constant vector M. The expected squared mag-
netic signal is found by integrating the power spectrum of
the magnetic field at the sea surface:

AB’ = E[®B,  AB))}
=f S, UK
R:

TdK (25)

where S, 1s the power spectral density of the layer thick-
ness and where U (k) is the (approximately linear)
transfer function between topography and surface mag-
netie field given by Parker [1973].

U = mpee 7 By K — BOM - (K - 0 1]

where 2., 15 the depth to the thin layer and 7 is a vertical
unit vector. here we have taken only the the first term of
Parker’s series and converted to the Fourier transform
conventions set out 1n appendix B, The complex wave
number terms in L'(k) achieve their Jargest magnitudes
when B, and M are vertical, thus (25) gives the following
hound

A8 < f moie T UIMES K] 2kt dk (260

where it has been assumed that the spedtrum s 1sotropig
(that s depends only upon A ) and we have substituted

k for |K|. From this equation we can estimate the error
introduced by giving the seamount 4 flat base. In this case
the effective area of the triangles is very large: thus we
may replace S;[k] by the original isotropic spectrum of the
boltom topography, S[k], and choose z, to be the local
mean depth of the ocean in the absence of the seamount.
In appendix B we give an expression for S([k] derived
from the data of Fox and Hayes [1985]. using the power
law model;

S[,\] = ('_1(1\'/()) -1

where ¢; = 27400 m* for young volcanic terrain and n
and /, are as before. Substituting into (26) we find

lo

KR

ABY £ 2mud M3l (3—n) (27)

“0
052
5

!
- nT-

=121

20

for M| = 10 A m ', a reasonable figure for young oceanic
basalts [Vacquier. 1971). Thus we estimate the rms error
from neglecting the roughness of the base of the
seamount ranges from about 9 nT in shallow water, say
o = 1500 m. to about 5 nT in water 4 km deep.

The major difficulty in using (26) for the upper surface
of the seamount is in calculating the proper spectral den-
sity S;[k]. We simplify the interpolation process by
approximating it as a low-pass filter that never magnifies
the original topographic signal and whose gain falls with
increasing k. Thus we treat the residual § as a high-
passed version of the topography. From the analysis of
appendix B we have one other property of the filter: the
total variance of the residual topography, ‘8% . gives us
the power gain. Of all the filters obeying these constraints
we find the one acting on S{k] that gives the largest possi-
ble variance in AB. Thus even though we may not know
the exact form of S;[k] we can still set an upper limit on
the interpolation error. It can be shown by the application
of the principles of linear programming [see Luenberger,
1969] that the optimal filter is a pure high-pass filter that
rejects all energy below some critical wave number and
passes a signal above that with constant gain. Using this
result and the expression for the power spectrum of the
field. we can maximize the variance with respect to the
two free parameters of the filter: its gain and the cutoff
wave number.  After some lengthy algebra we obtain the
results about to be summarized. Define a dimensionless
quantity ¢ by
w ol
a =

271’(} Zn

(n—nsf,/.;[i

The largest possible mean square magnetic field error due
to neglect of the surface roughness is estimated to be
n |

MY <

-\b"m.,\=u[$fl\ﬂ~‘(n-1)o(:.»-]‘ZL‘ o kud

5',
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Fig. 3. Upper bound on the rms error in the magnetic anomaly
due to smoothing of the surfuce of the seamount by interpolation
zy b the water depth over the shallowest pomt of the scamount.
&7, is the rms interpolation error. The magnetization iy taken
to be 10 A m ! und the error varies in proportion to this figure
Contour values are in nanoteslas

where Q(g)=¢" I'(y. 3y) and (in this definition
only!) TI'tg.a) is the incomplete gamma function
[4bramowitz and Stegun. 1965, chap. 6], ¢ is defined to be
the positive ¢ that makes Q{g) maximum, and with the
value of n that we have adopted. ¢ = 1.163 and
Qg Y= 0286. In Figure 3 we have contoured the rms
magnetic field in nanoteslas from these expressions. using
the value of 10 A m ' for M|, Combining the informa-
tion in Table 1 with that in Figure 3 we may conclude that
depending on the water depth, triangles with  sides
between 500 m and 2000 m can be used without introduc-
ing errors larger than S to 10 nT.

The numerical evaluation of the integrals in (23}
represents the greatest computational burden in practical
calculations. A large computational saving is achieved by
reducing the volume integrals over 1 1o integrals over the
surface § 1 following Parker [1971], we write (23) in the
form

- _L SR v P LY
I, = = IVﬁ VFE ds (28)
where
F 2[3”.v;
Ir.—s|

which holds because B, is a constant vector. Next con-
sider the following identity, which is valid for sufficiently
smooth functions:

VF -VFE =V -(FVF)~ FVF

All the measurement positions lie outside the seamount.
therefore jr,—s! > 0. and so Vi, —s| '=0 for all
s € V. Since V° commutes with B, - . this implies
V?F, = 0. and thus

VF -VF =V (FVF)

Substituting this into (28) and applying Gauss® theorem
gives

LN A Y

(29)
4w | o,

rﬂ =

where fi{s) is the unit normal to the surface at the point
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s € gt We remark that there is no guarantee that i)
exists for any surface point nor do we know it Gauss'
theorem s valid for a surface whose power spectrum s
like that in equation (B7): since we apph this formula to
the simplified body with triangular facets. no difticulty
arises, for the theorem is undoubtedly cosrect for regrons
with a piecewise plane boundary {Keflogg. 1953, chap 4]

The computation of the Gram matnix has been reduced
to the evaluation of (29) over the set of plane triangies by
which we have approximated the surface of the body. For
programming simplicity we also tessellate the lower. plane
boundary with the projections of the triangles detfining the
upper surface. The elements of the matrix 4 cun be con-
verted (o surface integrals by an analogous process. The
surface integrals for the Gram matrix cunnot be performed
in terms of elementary functions except in certain special
cases: therefore we use a numerical integration formula.
technically known as & “cubature” rule, designed for tri-
angular regions. Stroud [1971] gives a complete review of
this question and provides several examples of the
required type. The integral of a smooth function defined
for points in the triangle 7 is approximated by a weighted
sum of samples of the function:

f SRV N =Y w )
i

By an appropriate choice of w, and ¥ it is possible 10
make the cubature formula exact for all pelynomiual func-
tions in the plane with degree less than some upper limit,
p.othese are called degree-p formulas. This is equivalent
to the fumihar Gaussian quadrature method on the real
line. The theory for functions of more than one variable
is Tar from complete: for example, the smallest number of
sampling points that will yield a degree-p rule 1s not
known in general. 1t is nonetheless possible 1o generate a
suboptimal  formula by taking combinations of  one-
dimensional Gaussian rules in a so-called “conical pro-
duct” The optimal degree-S rule for triangular regions is
known (formuia *7, of Srroud [1971, p. 314D it uses
seven sampling points.  In contrast. the degree-5 conical
product formula requires nine sampling points. With a
complete theory, we would be able 1o choose a cubature
rule with guaranteed accuracy for every surface integral
but with the presently available methods this s impracti-
cal. Even for simple tunctions bounding the error of this
kind of approximation 1s difficult. Furthermore. Stroud's
[1971. chap. S} examples give the impression that the
bounds yielded by the available methods are of the crudest
kind, overestimating the true error by several orders of
magnitude in almost every case. Sard’s [1963] theory,
summarized by Stroud. provides a useful result for pur-
poses of comparison: for an integration rule of degree p.
the error depends principally upon the magnitude of the
largest derivative of the order of p + 1. this rests on the
assumption that the integrand possesses all these deriva-
tives which is true for our functions because they are ana-
Iytic. Roughly speaking. the integrand of (29) behaves
like 8°R, '9'R, ' where § is a first-order differential opera-
tor acting in the plane of the triangle and R is the dis-
tance from the observer j 1o a point in the triangle (and
similarly for R,). Combined with Sard’s result, this sug-
gests that the largest errors occur in contributions 1o the
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Fig 4 Relative error as g tunction of distance of tour cubature
rules C-0 Cyo Coand €0 Cosaseven pont opimuald degree S
rule  The others are conmcal produdt tales of degrees S and 9
The integrals are the contnibutions to the diagonal clement of the
Gram matoy of an eguiateral tacet. side s and the nbserver ovet
the center of the trangle at a distance D)

diagonal elements of 1" by facts close to the measurement
position because these are the conditions under which the
highest derivatives arise

As was noted earlier, some of the mtegrals in 0291 can
be vvaluated in elementary functions this happens when
i=B.=d and ;= & that s, on the disgonal ol the
Gram matriv. The expressions are comphicated and will
not be set out here By companng the ¢xact and numeri-
cal values for these diagonal elements we can assess the
performance of the approxvmation when its ikely to be at
its worst. I Frgure 4. we allustrate the performance of
four numencal cubature rules over o range of observer-
triangle distances. The integration s carned out over an
equilateral triangle, and the observer posiion mosves on g
line normal to the facet passing through the centrod. all
the distances. D. shown on the horizonta! avs are mea-
sured to the closest point in the facet normahzed by the
side. The top line, marked (-, gives the relative error as
a function of distance when the optimal seven-point rule is
used. The most important point to note 1s the strong
dependence of the error on distance between the observa-
tion point and the facet. As is expected. the error is gen-
erally smaller the more distant the observer is. We can be
more precise by using Sard’s result: the formula 15 exact
for fifth-degree polynomials, so the absolute error should
be be bounded by some constant times the maximum
magnitude of the sixth derivative of the integrand found
in the region of integration. A short calculation involving
spherical harmonics shows that for large distances the
sixth derivative of the integrand should decrease as the
inverse eleventh power of distance while the value itself
falls as the inverse fifth power. thus the relative error
ought to decrease with the inverse sixth power of distance.
Our numerical calculations confirm that the error falls at
this rate asymptotically. The line labeled C, shows the
error resulting from the ninec-point, degree-S conical pro-
duct rule; the error here also falls like the inverse sixth
power. Although the error is less at every distance for ('
than for C-, the improvement is slight in view of the need
for two more integrand evaluations. The behavior of the
16-point, conical product rule is shown by the line (. the
rule is exact for polynomials of degree 7. and so for large
D the relative error drops as the inverse eighth power.

THEORY AND SEAMOUNT MAGNt sy

Similarly, the 25-point, conical product tormuls s g
degree-9 rule, although the behavior of the relative cerror
curve is not 1 simple monotone decrease with [ We
have expet....cnted with a variety of triangle shapes in the
comparison with the exact integration we condlude that o
the distance is normalized by the maumum length ol .
side, Figure 4 gives an upper bound on the relative error
and so it may be used as a guide to the expected accuracy
of the different cubature rules

Based upon the foregoing discussion, we aan develop o
strategy for efficient numencal mntegration  Bedause the
error exhibits such a strong functional dependence on the
ratio of observer distance 1o tnangle side. we should keep
this ratio carefully under control  In the approximation of
the seamount by triangular tacets. the sides ol every trnan-
gle are arranged to be shorter than the water depth over
the shallowest corner times o tactor, in practice we have
imsured that the longest side of any tnangle never exceeds
This arrangement guarantees that
than one

twice the water depth
the ratio s of bigure 4 alwass preater
halt  Using the equilaterst trangie data as o basis tor an
error model. we condtude that with the Te-point conical
product rule the relatnve crror should reman below ane
part 1 a hundred tor the dagonal clements and betto:
than that for the off-diagonat ones  The coordinates and
weights tor this formula are given i lable 2 To check
the actual acvuracy of the mtegration. we have tested the
scheme g tew cases by applving ¢ - and ¢ . to the same
body . this test indicates that the erron estimidle Is conser-
vative and that we alwass achieve accuracies of a tew parts
in a thousand

We must understand how predise the approvimation to
the clements of the vanous matrices needs 1o be We
briefly consider the perturbation theory tor the solution to
(200 which we abbresiate by

Bt = b
The right side represents data (magnetic anomaly values).

TABLE 2. Degree-Seven Cubature Rule €,

\ 1} "
0860240136 0.009703785 0005423226
0.583550432 0028912084  0.022584049
0276843014 0.050210123 0035388068
0.057104196  0.065466995 0023568368
0.860240136  0.046122080  u.010167260
0.583590432  0.137419104  0.042339725
0.276843014  0.2386486600  0.066344216
0.057104196 0311164552 0.044185089
0.860240136  0.093637784  (0.010167260
0.583590432  0.278990463  0.042339725
0.276843014 0484508327  0.066344216
0.057104196  0.631731252 0044185089
0.860240136  0.130056079  0.005423226
0.583590432  0.387497483  0.022584049
0.276843014  0.672946863 0035388068

00710419 __ 0477428809 0023508368

Samphng  points  and  weights ol the
sivteen-point, degree-seven, conical product
cubature rule on the right-angled triangle
with corners (0, 0). (0, 1), and (1. O con-
structed as described by Srrowd [1971] The
vorrespoading values for any other triangle
may be found by a simple lincar transforma-
tion
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and these are known at best to about a few parts in 10%.
Let £ + € be the solution to a slightly perturbed data vec-
tor b + ¢, and for the moment, take B to be exact. Then

Big+e)=b+e

and it is well known le.g.. Golub and Van Loan, 1983] that
the perturbation in the solution is bounded as follows:

llell llell
lell o et
e By

where x is the condition number of B given by
k(B)=IIBI B I

(30)

Here we take the vector norm to be the ordinary
Euclidean length, and we take the Frobenius norm for the
matrices, the square reot of the sum of elements squared.
The condition number, which is never less than unity,
governs the way in which perturbations in the data are
magnified in the solution vector. It is impossible to
predict the value of k from general principles although we
expect it 1o increase with w in (20). If the answers we
obtain are to be useful, they must not be sensitive 1o
small errors in b, and therefore the condition numbers of
our matrices should be less than 10°, and we have checked
this in actual examples. Now let us examine how errors in
the matrix B alter the solution; let the numerical approxi-
mation to the true B be B + £ and the correspondingly
corrupted solution vector be £ + ¢, obviously

B+ E}E+e)=0b
and then there 1s a companion result of (30) that states

HEI

Ite Nl < x(8)

Hell ED

provided x(BWEN/NBIl < 1. We show that with an
appropriately small relative error in the numerical integra-
tion, the right side of the above inequality is small in com-
parison with the right side of (30). If the relative error in
cubature is always less than i,

HEI
1 - LEN
(B g

|E,| € v|B,]

because in (20) the diagonal of I' is positive. From the
definition of the Frobenius norm NEN/IIBI < v. It fol-
lows that the cubature error introduces effects in the solu-
tion small in comparison to those due to data uncertainty
if the relative precision is an order of magnitude smaller
than the relative error in the measurements. This is why
we have set the target for the level of accuracy in the
cubature rule at a few parts in a thousand.

4. THeORY Il APPRAISING THE SOLUTION

A complete analysis of any inverse problem includes an
assessment of the reliability of the solution. This is com-
monly provided by an estimate of the "resolution” associ-
ated with the given set of data. In our problem that kind
of study is inappropriate for two reasons. First, it requires
a theory capable of dealing with a vector-valued function
in three dimensions, making the display and computation
of the results extremely complicated. Second. even exact
values of the magnetic field measured at every exterior
point are incapable of yielding 4 unique magnetization

model which implies that the resolution of any conceivable
set of data will be poor.

Recall that the volume of the seamount times the mean
magnetization is just the total dipole moment of the body,
and if magnetic anomaly data were available everywhere
(or just on a sphere enclosing the seamount), the dipole
moment could be deduced exactly from the field data.
Therefore some aspects of the model can be obtained
unambiguously in ideal circumstances, and we shall focus
on the average magnetization, U'. The direction of the
associated vector allows the calculation of the pole position
of the magnetic field at the time of formation of the
seamount if we assume the seamount formed rapidly
enough that the motion of the tectonic plate may be
neglected, and if we accept the axial dipole hypothesis
[McEthinny, 1973, chap. 6]. The fluctuations of the secu-
lar variation are expected to average to zero over a period
of formation of the seamount. The validity of the paleo-
pole calculation might hold even if the seamount captured
a polarity reversal, provided the opposite polarities are not
present with exactly equal magnetic moments. Thus.
instead of assessing the quality of our model at every inte-
rior point with an analysis of resolution, we seek the
uncertainty in the single important property, the average
magnetization vector. Since this is a linear functional of
the unknown mode! we take up an idea of Backus [1970]
and Parker [1977] on bounding collections of linear func-
tionals in Hilbert space: our approach differs from these.
however, because of the way in which we handle uncer-
tainty in the measurements.

Even though a complete knowledge of the external
magnetic field does uniquely determine U, practical mag-
netic anomaly data cannot. This is shown as follows:
choose U arbitrarily, and demand that a model magnetiza-
tion simultaneously possess this average and satisfy the
given data. The requirement of a particular average mag-
netization may be written

X, M)=(X,.1) n=12.3

Since the right side can be calculated, we have three addi-
tional equations to be included with the N in (5) provided
by observation. Because the enlarged set of representers,
including the three artificial ones X,, X,, and X, remains
linearly independent. the associated Gram matrix is non-
singular, and therefore it is always possible to find a mag-
netization M exactly matching the observations for any
choice of U whatever. The proof of linear independence
is an easy extension of the one given in appendix A. This
negative result is no' as upsetling as it might at first
appear. when unreasonable U are chosen, the models gen-
eraled may be unacceptable because fitting the data
together with an "unnatural’ mean magnelization may
cause extremely large intensities and rapid variations of
the solution on a small scale. For example, any model
with tms magnetization of 100 A m ' could be rejected
even if it did explain the magnetic anomaly precisely: such
an intensity is considerably outside the range of observed
values for marine basalts established by extensive direct
sumpling in the Deep Sea Drilling Project of the crust
(Bleil and Petersen, 1983] and the sparser sampling of
seamounts themselves (Kono, 1977]. Since there is a gen-
erally agreed upon upper limit of magnetization for a plau-
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sible model, this factor may be included as part of the
information to be used in determining the rehability of the
mean magnetization.

The Hilbert space P is apparently suited to this problem
because its norm is, after a scaling, just the rms magneti-
zation. An acceptable model is one obeying the two con-
straints:

M. M) < VM, 3D

N
T -G . MFKS (32)
=1

where V is the volume of the seamount. (Strictly we
should write m(}), that is, the measure of the set 1)
The average magnetization of an arbitrary M € P is given
by

AM] =1 'Y X, (X,. M)
n--1
This foliows from the definition of the orthogonal uniform
elements X, and

X,..X,) = V3,

We ask how far in the sense of the norm the mean mag-
netization can be from U. and still satisfy both the data
and a constraint that the rms intensity be bounded by
M.,... By solving this maximization problem we find that
limits on the uncertainty in the mean magnetization: if we
find quite large values of M, vield a small range for
A[M], 1he data may be said to determine the mean mag-
netization well: if, however. the range in A[M] is large
even when M, approaches values within observational
experience, say 10 A m ', it must be concluded that the
true average magnetization is not strongly constrained by
the data. As we shall see, for the seamounts we have
studied so far the second alternative seems to apply: the
rigorous analysis of uncertainty is disappointing und leads

1o the unwelcome conclusion that a very wide range of

average magneltizations are compatible with the data and
the imposition of a prior upper limit on rms magnetiza-
tion. We have reasons for believing the true uncertainty
is much less than indicated by the bound given in the
theory; we will take up this matter again. But first, we
sketch the theory for obtaining a strict bound.

We write the mathematical problem as a minimization,
rather than a maximization: we seek the element of P
obeying (31) and (32) that minimizes — 1A [M] — U.it°.
As in the previous problem containing inequalities, we
appeal to the John multiplier theorem. constructing the
functional

FM) = -1AM] - U2
v
+ulY [d - G, .M +xM. M) (33)
1

where A.u 2 0 are two John multipliers associated with
complementary slackness conditions

kY
wlS ld - G, M) -5} =0
=1

A{(M. M) - VMr;‘Ln] e 0

Once more, we expect that neither 4 nor A will vanish and

that (31) and (32) will be equalities in all cases of practical
importance. For this problem we use a variational
approach: the stationary points of (33) are located by tuk-
ing the Gateaux derivative of F [see Smith, 1974, chap. 2]
and setting it to zero. The Gateaux derivative is

AFM] = —2F VX, . M)-(X,. UJX,

n- |

AY
+ M+ 2uY G, M) - d ]G, (34)
e
Suppose this vanishes when M = M. Then. because A is
positive, (34) can be rearranged thus

A

1
M =Y 4G +~ 3 X,

1 ne ]

(35)

where the coefficients ¢ and b, are various combinations
of inner products in the representers and uniform ele-
ments. In other words. the stationary value of F occurs at
an element of P that is a linear combination of elements

G, and X, . which puts M, in the same subspace of P as
U.. Equation (35) is substituted into (33). and the
minimization problem is reduced to one in a finite-

dimensional space, tinding the appropriate coefficients a,
and b,. The equations are expressed in matrix form it all
the inner products are performed. We find

I A4
= —([4' l'I]('—ﬁ||3+)\t"[41 ”l(‘-k/,tll[f Ale—dv-

= —llBy — BII°+ A¢! Bye + wllBse — dIIF (36)

where the vector ¢ € RY ' is a composite of the

coefficients ¢, and b, .

¢ = ((l]. dr o, dy bl~ b:. b_;)l

and 8 € R is the vector of coefficients defining U, in the
uniform basis. In (36) the norms are ordinary Euclidean
lengths of vectors and / is the 3% 3 unit matrix; the other
matrices and vectors are the same as those appearing in
section 2. the correspondence between the matrices B,,.
B.. B, and the ones in (36) is straightforward.

Viewed as a quadratic form in ¢, the functional F has
only one stationary point which can be found by
differentiation: for any given John multipliers x4 and A, F
is stationary when

¢ = (=B{B,+ AB, + uBiB.) "WwBld — BiB) (37

The next problem is to find the appropriate multipliers so
that the data misfit and the maximum ailowable norm arc
reproduced, the classical problem of unknown multipliers.
We consider (37) to define the vector ¢ as a function of A
and . that is, ¢ = ¢(\, ). In these terms the two condi-
tions to be obeyed are that fy(A.u)= f(A, u)=0,
where

(38)
39

Sy =c ) Bie,w) — Mi,,
Lo wy =B, w) = dIP = §?

In principle we can apply Newton's method to solve this
pair of equations once the derivatives are known:
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81 _ 5p Be 8 _ . g1r9c
o~ Boa o~ LB - dly
9./ ¢ a9/ r 0c¢
= -~ = 2 ¢ — d r=-
W 28, o on By — d] ™

and from (37)

% = —(—BfBo+ AB, + uBIB)) 'B,c

% = (—BfBo+ \B, + uBiB,)"'BI (d — By)
I

Here the functional under minimization is concave, not
convex, and so uniqueness of the solution cannot be
guaranteed. In particular, there may be more than one
(A.u) pair giving rise to the root /(A .u)=
S2(n,u) =0, that is, the desired values of norm and
misfit. If there are several solutions, we must choose the
one that gives the largest value of ||Byc — BII°. In the
absence of any theoretical results on this matter, the only
safe procedure is to explore the positive quarter plane
A, > 0, evaluating a measure of misfit to the root such
as f{ + /4. Where this indicator function is small. the
iterative process can be invoked to produce a precise root,

If (37) is used together with (38) and (39) the search
process would be very expensive computationally, since
for every A, u point we must solve (37), a linear system
of the order of ¥, = N + 3, where N is the number of
magnetic anomaly observations, typically of the order of
150. After advantage is taken of the symmetry of the
matrix, each solution requires of the order of N{/6 vpera-
tions. or "flops’ [Golub and Van Loan. 1983, p. 90]. We
can entirely avoid these costly solutions at the expense of
two initial spectral factorizations; the details are set out in
appendix C. In most cases, the rearrangement described
in appendix C can achieve reductions in computational
cost of a factor of 200 or more.

Having found the vector ¢ that minimizes the func-
tional F of (36) we compute the corresponding error cone
in the mean magnetization vector as follows. The vector
u € R’ given by

u= By =147 Vllc

is the set of expansion coefficients of A[M], the average
magnetization of the solution M, in the basis of uniform
elements X,,. We may treat u exactly as the the uniform
part of the magnetization of the seamount; the vector 3
plays the same role for U.. Thus the angle between v and
B. namely, cos™!(u”@/iull @) is an upper limit on the
angular uncertainty in our determination of the direction
of average magnetization, which can easily be converted
into the error of the paleomagnetic pole position. With
considerably more work one could obtain the cone of
uncertainty, by maximizing the angle in all the planes con-
taining the vector 8. the figure would be entirely con-
tained within the cone we have just found and would cer-
tainly not have a circular section. The complexity of the
maximization problem and the rather poor performance of
the present approach with field data deters us from pursu-
ing the question further.

5. APPLICATION TO FiELD DATA

We now apply the theory to a seamount survey per-
formed in the South Pacific. P. F. Lonsdale collected the
data on the R/V Thomas Washington of the Scripps Insti-
tution of Oceanography during leg 6 of the Marathon
Expedition in September of 1984. The seamount chosen
for study, at 48.2°S, 148.8°W, designated LR148.8W on
account of its longitude, is the youngest of a long series to
be found on the Louisville Ridge. Total field magnetic
values were measured, and precise bathymetric informa-
tion (contoured in Figure 5) was available through a Sea
Beam system. Global Positioning System Navigation was
available for a part of the survey and for the remainder,
navigation relied upon dead reckoning based upon the
Doppler log.

Morphological and petrological evidence [Hawkins et al.,
1985] supports the idea that the Louisville Ridge is a hot
spot chain similar to the Hawaii-Emperor chain in the
North Pacific but on a somewhat smaller scale; it appears
to have been active for a comparable period of time.
LR148.8W is a large edifice at the southern and therefore
younger end of the chain. It is believed to be quite
recent, less than 10 m. y. in age. We expect that the vir-
tual geomagnetic pole (VGP) of the uniform part of the
magnetization should lie close to the present-day rotation
axis of the earth, assuming the effects of secular variation
have been averaged out during the time of construction.
From Figure 6 we see that the magnetic anomaly is com-
plex and does not resemble that of a uniformly magne-
tized body (Figure 7). perhaps suggesting the presence of
both normal and reversed magnetization, although normal
material clearly predominates.

The original records were prepared for inversion as fol-
fows. The Sea Beam bathymetric data were sampled with
a spacing approximately proportional to the local water
depth in order to ensure accurate numerical cubature in
the computation of the Gram matrix elements as dis-
cussed in section 3. A total of 295 samples went into this

SNouth latitude

48 4‘

149 0 148 8 148 6 148 4
Fest longifude

Fig. 5. Bathymetry of LR148.8W contoured at 250-m intervals
with 1000-m levels plotted as heavy solid lines, The solid circles
give the locations of the magnetic ficld intensity observations used
in the inversion procedure. The interior dashed box is the boun-
dary of Figures 6. 7, and 12. This box measures approximately 44
km by 34 km,
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Fig. 6. Magnetic anomaly associated with LR148.8W, contoured
at an interval of 150 nT. Negative contours are dashed lines. and
the zero level is shown as a heavy solid line. The maximum
anomaly contour is 1200 nT. Notice that the scale of this map is
stightly larger than that of Figure 5.

description. The coordinates in the horizontal plane were
organized into a tessellation best approximating equilateral
triangles by Warson’s [1982] algorithm. yielding 565 trian-
gles (Figure 8). When the appropriate vertical coordinate
is assigned lo each vertex, the resull is a model for the
upper surface of the seamount in terms of triangular
facets; the lower boundary of the model is the honzontal
plane bounded by the 4250-m contour. We showed in
section 3 that replacement of the true bottom surface by a
plane and of the upper surface by triangular facets intro-
duces quite negligible error into the calculations. The
model seamount is shown in Figure 9 as it would be seen
by an observer in the south looking in a direction 20° west
of north and downward 10° below horizontal: in this figure
there is a factor of 5 vertical exaggeration. Notice the
aimost flat top and nearly pseudo sphere appearance of the
flanks of the volcano. Magnetic anomaly values were
computed from the original intensily measuremrents by
subtracting a standard main field model, lnternational
Geomagnetic Reference Ficld 80 [Peddie and Fabiano,

i /
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Fig. 7. Best approximation to the observed anomaly ol Figure 6
by means of an uniform internal magnetization, contoured at an
interval of 150 nT. Negative contours are dashed lines, and the
zero leve. is shown as a heavy solid line. The maximum contour
is only 750 nT. Three additional parameters describing a lincarly
varying background feld have been fitted, to allow for small
errors in the main field model.
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Fig. 8. Plan view of the triangular facet model of LR148 8W used
in the numerical calcufations. There are $65 triangular facets in
the upper surface of the model. the tower boundary is a plane
located on the 4250-m contour.

1982]. At the latitude of the survey, diurnal variations are
of sufficiently small amplitude that they may safely be
ignored. A subset of 131 anomaly values as shown in Fig-
ure 5 was chosen to be the data for inversion purposes.
Notice that no interpolation or estimation from contour
maps was required: only magnetic values from the origina
survey were used along with corrected positions from the
Sea Beam map. Also analyzed were magnetic readings
taken during the ship's passage between seamounts of the
chain. Seafloor spreading anomalies were prominent. but
LR148.8W does not straddle a reversal boundary: it lres
on reversely magnetized crust between anomalies 26 and
24 [Lonsdale, 1986] The magnetic field fluctuations in the
vicinity were found to have an rms amplitude of 32 nT:
the power spectrum had the expected exp(~dmkiz,) form
for a field of crustal origin, but the amplitude is much
higher than can be attributed 10 bottom roughness (sce
section 3) and a reasonable uniform magnetization. and
we infer that the observed field is due primarily to locat
variations in the intensity of the re ersely magnetized
crust. We chose 30 nT as the level of misfit for model
predictions. notice that the p.o magnetic anomaly ol
LR148.8W is over 1200 nT.

The calculations of the Gram matnix 1" and the Green
matrix A4 were carried out as described using the (', and
(> cubature rules. The construction of the Gram matrix
is by far the most time-consuming part of all the computu-
tions; on the Crav XM/P-48 at the National Science Foun-
dation San Diego Supercomputer Center, the (. calcula-
tion ook 10 min, which would translate into several days

Fig. 9. View of the model seamount as seen by an observer to
the south looking 20° west of north and downward 10°. The vert-
ical scate has been exaggerated by a factor of 8.
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on a lesser machine. To check the accuracy of the numer-
ical cubature, many of the subsequent calculations were
performed with the matrices found by the two rules: no
significant differences were observed. from which we con-
clude that the C, rule was satisfactory.

The first model calculation to be performed was the
traditional least squares fitting of a uniform model to the
anomaly (with the additional free parameters for slope and
offset of the ambient field). in our notation this is just the
least squares problem

AB~d

which we solved in the usual way by QR factorization
[Golub and Van Loan, 1983, chap. 6]. As we have already
remarked. the field predicted by a uniform magnetization
(Figure 7) is a very poor approximation to the measured
one. The rms misfit between the observed anomaly and
the model field is 269 nT. nearly 10 times the crustal
background noise of 30 nT. Therefore litile confidence is
to be placed in the associated VGP location of 57.8°N,
118.9°W, which is far from the north geographic pole.
The intensity of magnetization of the uniform model is
3.7 A m ', a perfectly satisfactory figure.

We turn next to the most nearly uniform solution
obtained by seminorm minimization. The calculations
involve the solution of the linear system (equation (20))
in section 2; recall that the multiplier x is unknown and
must be chosen to yield a model with the desired misfit.
Rather than single-mindedly exhibiting one solution with
the desired 30-nT misfit, we swept through a large range
of multipliers. calculating the VGP position and misfit for
each. This is not a computationally expensive procedure.
and it is instructive. We saw in section 2 that very small
values of u cause the solution to approach the least
squares solution with its large misfit of 269 nT, while large
values of the multiplier lead to misfits approaching zero:;
this behavior is apparent in Figure 10a. At the preferred
misfit of 30 nT the VGP location for the uniform com-
ponent of the solution, U, is 83.0°N, 47.2°W_ remarkably
close to the geographic north pole. The position of the
VGP is quite insensitive to misfit over a considerable
range: it moves less than 4° as the misfit varies from $ nT
to 100 nT. This is illustrated in Figure 106 where the tra-
Jectory of the pole is plotted on a map of the polar region.
Such stability is highly desirable because our estimate of
the uncertainty in the magnetic measurements is not pre-
cise. The most nearly uniform model corresponding to
the 30-nT misfit has an overall rms intensity of magnetiza-
tion of 6.22 A m''. The nonuniform component of the
solution accounts for only 0.78 A m ! in the sense of the
norm. (Recall that the uniform part U and the nonuni-
form portion R of the model are orthogonal elements of
P.} Thus only about 13% nonuniform magnetization is
needed to reduce the misfit from the 269 nT of the best-
fitting purely uniform model to 30 nT. Although the
nonuniform part of the model is small in its contribution
to the overall magnetization, its presence is a decisive fac-
tor in obtaining good agreement with the data. In Figure
11 we attempt to display the internal magnetization vector
of our preferred solution: the seamount is cut n three
horizontal planes, and in each section we draw arrows,
whose sizes and orientations represent the magnetizahion
distribution.  We see that the bulk of the model is nor-
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Fig. 10 Behavior of the solutions as the parameter p vanes. (w)
Rms misfit of computed magnetic anomaly 10 observed values as
a function of John multiplicr & A misfit of 30 nT s consdered
appropriate. (b)) Pole path o) the different solutions shown i a
Lambert equal-area projection of the polar region. Open circles
are poles with rms musfits of 200, 150, and 100 nT from lett w
right. The star is the pole of the 30-nT musfit solution

mally magnetized and resembles U with its dip of 65 2°
and declination of —4.8°; there is no reversed material in
these sections. [t is the nature of our solution that the
magnetization s more irregular at those points nearest the
observations, that is, the points on the upper surface of
the seamount. and this is evident in Figure 11, Therefore
near the peak there probably will be small pockets of
reversed magnetization because of the greater fluctuation
of the solutita on the boundary  Little credence should
be given to such features even though a scamount formed
during the Cenozoic nught be expected to contain normal
and reversed material. 1t s not possible to prove
rigorously from the external field data that reversed
material is present. this follows from the fact that any
finite magnetic data set can be satisfied by a body normally
magnetized in its entirety, but we shall not go into the
proof here.

How accurate is the paleopole of the mean magnetiza-
tion? In the previous section we described a theory that
was capable in principle of providing the answer il we are
prepared to supply an upper himit on the rms magnetiza-
tion to be found in marine basalts. The prinaiple of the
method is to construct the worst possible case: the model
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Fig. 11 Magnetization vectors i three horizontal sechions of the
seamount at bathvmetry conteur levels 1000 me 2000 m, and
3000 m. The solution illustrated s the most umform model with
rms mistit to the datie of 30 nT  The length of the arrow depicts
the strength of magnetization and the onentation can be mferred
trom the aspect of the comaal head

that lies as far as possible from the preferred solution
while lving within the constraints set by the the data and
an upper hmit on the norm of M. or equivalently. the rms
magnetization. We could embark upon the search over
the A, u plane seeking stationary values of F in (33), but
in the present example this 1s unnecessary because we can
find a model obeying the constraints with a completely
different VGP position, in other words we need not seek
the worst case  In section 2 we discussed the problem of
finding an element in P nearest 1o a fixed element U if
the fixed element is 0, the sero element, we will find the
smallest mode! of P fitting the data. The magnetization of
this smatlest model s, from (10}, a linear combination of
the representers G, When this theory is adjusted to
include misfit and the three parameters for the ambient
field. it becomes an example of seminorm minimization
on P'. and the necessary matrix clements are alreads
available. Arranging u to give the expected 30 nT misfit.
we find an rms magnetization averaged over the seamount
of only 1.70 A m ', and the pole position of the projection
of M onto the subspace of uniform elements is 60.1°N,
34.4°E. Obviously this model has a small enough norm
and a good fit but its pole lies 30° from that of the most
uniform model. there is no doubt that by allowing u larger
norm. solutions with poles even further awiy must exist.
Is it really true that the uncertainty in the uniform VGP
15 so Jarge? The fact that the direction 1s very close to
what one might expect on geological grounds encourages
us 1o believe otherwise, it must be remembered that we
have approached the problem of uncertamnty by estimating
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an upper bound and that the true error could be far
smaller than that bound. An explanation for the generos-
ity of the error bound in the theory of this paper may be
traced to a property of the norm of P: although the rms
magnetization of the minimum norm model is only
1.70 Am ', we calculate that at some points within the
model the local magnetization intensily rises to nearly
1500 A m ', a 1otally unacceptable value, Thus a reason-
able rms magnetization is by itself no guarantee of a plau-
sible magnetization model. Perhaps a more suitable res-
triction would be that the magnetization at any point in ¢
should not exceed a prescribed limit, say 20 Am ' This
is a kind of uniform norm, but uncertainty estimates
based upon it would be much more complicated than
those undertaken in this paper. the idea is probably worth
pursuing, but we do not take it up here.

Far from the seamount its magnetic field closely resem-
bles that of a point dipole, the influence of higher mui-
tipole terms having fallen away more rapidly than that of
the leading term. An analysis of three suitable field mea-
surements can yield the vector moment of a dipole. But
the dipole moment divided by the volume is just the mean
magnetization of the seamount. Another way of looking
at this question was given by Parker [1971): we imagine
trying 1o construct the linear functional for X, say from a
linear combination of the representers G,. The
representers for distant observers are much smoother and
more nearly constant, so that they are much more valu-
able to the approximation. This discussion ignores the
problem of noise in the observations, while the field
vatues far from the seamount have a more direct connec-
tion with the average magnetization. their refative accuracy
is much less than those nearer the body because the noise
fields do not drop off with distance from the seamount
while the signal does. There must be an optimal distance
from the seamount at which the field values yield a max-
imum amount of information about the U did the survey
of LR148.8W extend to that optimum distance? We have
reason 1o believe that it did not. A certain amount of
manipulation of (20) yields the following informative
expression for 8. the vector of coefficients for U in the
basis X

core

dH 1A T
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Weot longutude
Fig 12 Dimensionless weight function expressing the influence
of cach ficld measurement upon the estimation of the average
magnetizaton. The small levels in the central region indicate that
magnetic measurements there have little effect on U
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B=4"NWu+D) ') ' U/u+T) 'd
= (uo/dmiw’d

where w is an N x 6 matrix (remember the inclusion of
the three additional free parameters ‘escribing the back-
ground field); the factor u,/4m renders w dimensionless.
This equation shows how every magnetic field measure-
ment contributes to each coefficient of the uniform com-
ponent of ihe solution. Column I of w can be interpreted
as a weight vector in an equation of the form

B = o/ dmdwld

When w, is mapped we see which regions of the survey
affect our determination of 8, by the size of the weight
function. The average magnetization is insensitive to the
magnetic anomaly in places where w is small. and con-
versely. i« depends heavily on data where w is large.
(This interpretation is not strictly valid because if a
different data value appeared at any point, the size of u
would have to be adjusted to retain the desired musfit,
thereby changing w . if the putabive changes are small, so
will the perturbation 1o u.) As a synopsis of the influence
on all of U we have contoured (w3 ~ w~ + wil in Fig-
ure 12. We discover that our knowledge of U s deter-
mined for the most part by values at the edge of the sur-
vey  If 36 data are removed in a 15-km disk at the center
of the magnetic anomaly, thus obliteraung the central
maximum and the negative patch to the south of 1. the
uniform part of the new solution has a pole position only
6° away from the one obtained with all the data. This
confirms the relative lack of importance of the central
region for the purposes of obtaming an estimate of the
uniform component. The way in which the weight funce-
ton grows toward the edge of the map strongly suggests
that the optimum distance for recovering information
about the average magnetization probably lies beyond the
boundary of the present survey, and it must be concluded
that to obtain the best estimate of the average magnetiza-
tion. the area should be extended considerably. We antici-
pate that with a more nearly optimal distnbution of mag-
netic  observations the error will bound significantly
smaller.

LR148.8W is a challenging seamount for analysis: the
magnetic anomaly is complex and obviously incompatible
with the assumption of a uniform interior. The fact that
we are able to recover a reasonable VGP and that the
minimum departures from perfect uniformity are very
mild gives us encouragement as we contemplate a wider
application of the technique. OQur seamount is an unusu-
ally large body. nearly 1600 km® in volume, and it comes
within 500 m of the ocean surface. These two properties
are major factors in determining the computing time
needed for our approach, particularly when it is recalled
from section 3 that the size of each triangular facet is

governed by the local water depth. The majority of

seamounts would make much more modest computational
demands.

6. Discussion
We have presented a method using linear inverse theory

to construct  an internal magnetization  function  for
seamounts based upon their magnetic anomalies and

shapes. We have shown why it is fundamentally impossi-
ble to deduce the true magnetization from external field
data no matter how precise or complete it is. Therc ore
our model has been selected to correspond as closel' s
possiblie to the simplest structure, the uniformly magne-
tized body. Approximations to this ideal are expected on
geological grounds if the seamount formed rapidly or dur-
ing a period of single polarity of the main geomagnetic
field. Nonetheless, extensive modeling of actual
seamounts has shown that the uniform model by itself
rarely gives an accurate account of the magnetic anomaly
so that significant nonuniformity is certainly present.
Application of the method 1o a young seamount in the
Louisville Ridge chain yields a magnetization accounting
accurately for the magnetic anomaly, we find that in the
measure of the norm. only 13% nonuniformity 18 required
to obtain the good agreement, even though the observed
anomaly i1s complex and poorly approximated by the field

of a uniform body. This result suggests that the picture of

an essentially uniform seamount may not be so inaccurate
after all, but since even quite small amounts of hetero-
geneity have a disproportionately large influence on the
form of the magnetic anomaly, this has been impossible (o
appreciate until now. We predict that relatively small pro-
portions of nonuniformity will be needed in all the
seamounts with simple magnetic anomalies.

The mean magnetization is a property of a seamount
that can in principle be obtained from the magnetic anom-
aly alone. The direction of the mean magnetization vector
is diagnostic of the paleomagnetic field averaged over the
period of formation of the body. and it is the most valu-
able information about the seamount for tectonic studies.
In our example we find that the mean magnetization vec-
tor predicts a paleopole very close to the north geographic
pole in agreement with our expectations; this is in contrast
to the pole position of the best-fitting uniform model.
which lies 30° away. We have developed a theory for the
uncertainty in the estimate of the mean magnetization
requiring an upper limit on the overall rms magnetization
allowed in the volcanic rocks: sampling and knowledge of
rock magnetism puts such estimates on a secure footing.
Unfortunately. the results for the Louisville Ridge
seamount are disappointing: the uncertainty is so large as
to give the impression that the calculated paleopole posi-
tion is unreliable. The excellent location of the model
pole leads us to believe that the true error is much smaller
and that a better theory is needed for its estimation. We
show that significant improvements in the uncertainty esti-
mates can bu expected to follow from a more extensive
survey, since it is apparent from our calculations that data
taken at a surprisingly great distance from the magnetic
sources contain substantially more information about the
mean magnetization than those closer to them. We would
not recomimend dispensing with coverage over the central
region in future surveys, however, because the shape of
the seamount must still be known in detail if its magnetic
field is to be properly analyzed. It is 1o be hoped of course
that progress on the theoretical front will obviate the
necessity of resurveying every seamount. In fact we may
anticipate here a refinement in the theory of error estima-
tion: recem work [Parker, 1987) relying upon a plausible
statistical characterization of the magnetic nonuniformities
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promises to provide the basis for an aiternative and more
powerful theory for the uncertainties.

APPENDIX A: LINEAR INLcPENDENCE
OF THE REPRESENTERS

The linear independence of the representers in (2}
guarantees the positive definiteness of the Gram matrix,
an essential property for a number of results in the paper.
For any particular seamount and set of observer positions
one could in principle verify that I’ had a positive deter-
minant, but it is more satisfactory if this fact can be
shown in general as we shall now proceed to do. We fol-
low the usual path of investigating the consequences of
assuming that the functions are linearly dependent.
Linear dependence would imply the existence of a set of
constants y, not all zero, such that

Al
0=Y yGr..s)

=1

for every points € }. From (2) we see this is equivalent

[€s]
0=B8, VVFGs) (AD

where

Y

Fs) =Y X

—— (A2)
1l II’, - SI

For this appendix only, let us erect a local Cartesian axis
system with the - direction aligned with B,. Then
B, ¥ =9/9:. It is elementary that the only solutions 1o
(A1) are of the form

Flix v.2)=c 2+ ¢+ fxov)

where ¢, and ¢, are constants and f is an arbitrary con-
tinuously differentiable function of x and y. Thus linear
dependence implies the existence of coefficients y. such
that

AY
- Y.
TGt oy = — (A3)
R RNAIED ey

for (x.y.z)=s € V. The functions I/lr, —s| are all
analytic in s inside V', so that if those coefficients exist,
(A1) remains valid by analytic continuation of the indivi-
dual components of the vector everywhere outside V',
except right at the singularities s = r,. Therefore the pro-
perty (A3) may be extended outside V' in the same way.

Consider a sphere centered at the origin of coordinates
and enclosing all the observation positions; its radius R, is
greater than maxir,|. We evaluate F using (A2) at a posi-
tion vector s outside this sphere such that |s| > 2R,. it
follows that

Lyl
IFs)l < 2. -y
Ny max

< —_—
‘SI“RI

2N7m;n
Is|

where ym.. is the )argesl of all the magnitudes of the y,.
Thus by choosing ls| large enough we can make 1F| as

<

small as we please. If s = (x,.y.z) and = increases
without bound while x and y are fixed, £ must tend 10
zero. Thus ¢; must be zero, or otherwise the left side of
(A3) would grow in magnitude in the limit of large -. But
if ¢, vanishes, the left side of (A3) no longer depends on
z. Therefore the ¢, + f (v, y) must vanish identically for
every x and y, if F is to tend to zero when = tends to
infinity. In other words, the left side of (A3) is zero.
Thus equation (A3) has become

0= 2|r_

From this we show that all the y coefficients vanish too.
Renumber the coordinates and coefficients so that y, is
the coefficient of largest magnitude: also consider a posi-
tions so that [r; —s| = €. Then from (A4)

(A4)
s|

Yo o Xy,
€ 1=2 ll’, —SI

Now let R, be the smallest of all the interobserver dis-

tances |r, — r, |1 if € is chosen to be smaller than R./2 it
is easily verified that
hY
Ymn < z 2|‘y/ (AS)
or !
Y mar S € (

where C is some constant independent of €. Since we
may choose € to be as small as we please, this means that
the y, largest in magnitude must vanish: so then they all
must. This contradicts the original assertion that not all of
them could be zero, and therefore we must conclude that
the representers are not linearly dependent.

Notice that the proof fails. as it should, if two of the
observer positions are in fact identical: then R. would
vanish, and (AS5) would not be legitimate.

APPENDIX B: APPROXIMATION OF TERRAIN
BY TRIANGULAR FACtTS

When the power spectral density of the bathymetry is
known. it is possible to estimate the probable error com-
mitted by replacing the true surface by a plane triangle
that interpolates the bathymetric values at 1ts corners.
Although to our knowledge no spectral studies exist for
the surface of an actual seamount, it seems plausible to
assume that on scales much less than the diameter of the
seamount, the surface roughness is approximately the
same as that of very young oceanic seafloor or of terres-
trial lava flows, and for both of these, quantitative analysis
is available. We begin with data presented by Fox and
Hayes [1985] on the spectrum of bathymetric profiles: one
of their spectra describes the Gorda Rise, and we shall use
the parameters estimated for this region.

We find it most convenient to develop the theory using
the autocorrelation function of the topography. The
(two-dimensional) autocorrelation function, R(X), s
defined by the expectation of the product of two samples
of the topography taken at positions v and v + ¥ (we use
X rather than x to stress the fact that the vectors give
positions in the plane), and this is related to the power
spectral density through the Fourier transform:
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RG) = Elh DA (7 + ) (B1)
= [ S®) explanik - %) %
RrY

= [ J st k) exptamilic x + ko)) ak, dk, (B2)

where S(K) = S(k,. k,) is the wave number power spec-
tral density of the topography. In practice it is found that
the specira are fairly isotropic, so that § depends only on
|&'] and not on the direction of k: it follows that R is a
function independent of the direction of its argument vece-
tor. We denote the isotropic spectral density by S{I&]
and the isotropic autocorrelation function by R [{7{].
admitting the slight risk of confusion from this notation.
Fox and Hayes do not provide power spectral densities
S(K) or isotropic spectral functions S[k]]. but give
instead the one-dimensional spectral amplitudes of
profiles, functions we denote by 4,(k, ). Now

.4,(k.)3=_£ S(K) dk, (B3)

which is just the two-dimensional power spectrum
integrated in a wave number direction normal to that of
the profile [see Shure and Parker. 1981]; since all direc-
tons are equivalent, any constant direction may be
chosen. I we evaluate (B2) for » = 0 we see from (B3)
that

R0 = [ 4,000 explamik,x) dk,

= Rx] (B4)

Thus the isotropic autocorrelation function is just the
one-dimensional inverse Fourier transform of the profile
power spectral density.

Fox and Hayes find for many kinds of terrain a power
law holds quite well: we rewrite their result:

Ak = ¢ Ik, [ (85)

where [, 1s an arbitrary constant with dimensions of
length.  After a careful interpretation of the unusual units
used in the paper, we calculate that for the young volcanic
terrain of the Gorda Rise. ¢, = 4800 m' and 7 = 2.48
when /15 set to 1 km. Equation (BS) cannot be substi-
tuted into (B4) in a classical way because the Fourier
integral diverges owing to the singularity at k&, = 0. in fact
this shows us that the extrapolation of the spectrum to all
wave numbers is not strictly legal since it possesses infinite
energy caused by contributions at long wavelengths. !How-
ever, it is only the shart wavelengths that concern us here
and so we use distribution theory to evaluate the Fourier
transform {Gel’fand and Shilov, 1964, p. 359]:

Rir}= 202m" ‘ol sintan/ DU Q=n) /1) !
= ¢y (rfI ! (B6)

In this appendix, I" is the familiar special function. not the
Gram matrix. We find ¢; = —-239 m’. [t is at first aston-
ishing that R [0] = 0 and that it is negative elsewhere: the
explanation is that the generalized Fourier transform has

suppressed an infinite constant term. The true autocorre-
lation function has a large but unknown value at zero. but
the result we shall obtain (equation (B8)) is invariant
under addition of any constant to R so that our ignorance
of the constant is unimportant.

From (B6) we may calculate the isotropic spectrum
S{k] by means of a Hankel transform which is just the
inverse transform of (B2) expressed in polar form
[Bracewell, 19781:

Sik]= f JoQukr)R1Ar) 2mr dr
11

= ¢;(kf,) 0 (B
where

_ ol ri+q)/2)
7n I'((1—=n)/2)
For the constantls we are using ¢;= 27400 m*. This
result will be useful in calculating the magnetic effect of
the roughness in the terrain.

Consider now a triangular region T defined by its
corners at position vectors ¥, ¥, and X, which lie in a
horizontal plane. The plane-interpolated topography for
¥ € T is found from the values of the corners via a for-
mula of the kind

hx) =3 hiz)e, @)
= |
where the basis functions. &, are each 1 at ¥ and zero
along the opposite edge of the triangle, varying linearly
over T. We can find the variance of the interpolation via
the expectation, assuming as usual that 4 has zero mean.
Define

8 = Elth () — n(x))7]

Then, using the definition of the autocorrelation function
(B1) and performing a certain amount of algebra. we
obtain

8 =RIONI+T o (0 + T RN -7 b (V)b (¥)
- Y 2Rlix-x 1l (¥)

Next we average over the triangle T

8, = f 8 d'Y/A
1

where A 15 the area of the triangie. Then, performing the
integrals involving the basis functions we find

&y = ";R[O] + *L—E Rllv.—x.1)
! VY- ) 4%
- sz/' RIx~% b (%) d'x (B8)

This 1s a general result, not depending on any particular
choice of autocorrelation function, except that isotropy has
been 2ssumed. In substituting (B6) into (B8) it is con-
venient to define a cvclic extension of the corner vectors
so that V., = v.. for y = 1. 2 and similarly for the angles
at the corners associated with each X, which will be called
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#,. We wish 1o separate the effects of size from those of
triangle shape, and so we introduce normalized side
lengths, referred to the area of the triangle:
5 =I%.,—x..//a". With all this we find after some
effort that (B8) becomes

55::\[ = (> (A '/I;))" l@(T) (B9)

\

where @(T) is a shape factor for the triangle given by

) A e A N I N L
(D) (4205, 6

3

omn=y

J=1

(B10)

and here the function V¥ is the integral

N

f de
sin”" ¢

H

Vy)

cost Fl+m/2,1/2: 3/ 2. cos'0)

where F is Gauss' hypergeometric function; power series
expansions given by Abramowitz and Stegun [1965, chap.
15] are quite convenient for evaluating W. The function
& (7T) is plotted in Figure 2 for the value of n = 2.48
given for the Gorda Rise by Fox and Hayes [1985]. The
smallest value is attained by equilateral triangles with
(7)) = 03198 and only extremely scalene triangles
achieve values above unity.

The Fox and Hayes study gives spectral estimates up to
k., = Skm ' or a wavelength of 200 m: it would be help-
ful in confirming our analysis if we could show that the
same power law extended to smaller scales. We have
compared their spectrum with one found for a subacrial
lava flow in Bonito Arizona [Jueger and Schurimg. 1966).
The largest wavelength estimated n this spectrum is 10 m.
so that there s, unfortunately, no overlap. We find that
the marine spectrum, extrapolated to the shorter scale is
consistently a factor of 10 smaller in power. 1t i~ likely
this discrepancy results from the fuct that the Bonito flow
consists mostly of aa. which s almost certainly much
rougher than the expected surface of a4 seamount on the
small scales

ApPENtN CErrcr st Exeloraaios
OF THE AL, p PUANE

In this appendix we describe a practical means tor solu-
ton of (38) and (39)  Certain roots of these equations
give nse to magnetizations of prescnibed norm and data
misfit that are as far as possible from the umiform state. It
15 possible that other stationary points exist to the opumi-
sation problem that do not correspond to the desired max-
irwm, so that a fairly complete exploration of the A, pu
plane should be performed to uncover all the roots. For
this 1o be a practical proposition, an economical method
must be found for solving (37), the large system of linear
equations associated with each point in the plane

The fundamental idea is the possibility of finding a sin-
gle similarity transform simultaneously mapping two sym-
metric matrices into diagonal form [Golub and Van Loan.
1983, chap. 8]. First we solve the eigenvalue problem for
the matrix B, and write the solution as the spectral factori-
zation;

B, = 0\ Q]

where Q, is an Nyx N, orthogonal matrix, whose columns
are the eigenvectors of B, and A is the diagonal matrix of
eigenvalues. Notice that all the eigenvalues should be
positive because B, is positive definite. in practice, small
errors in the cubature may cause this to be untrue for the
actual numerical array and so it is necessary to regularize
the problem by adding a small positive constant to the
diagonal of B, or by taking absolute values for the eigen-
values. When this is done, the square root of A is defined
as well as its inverse. we denote this in the obvious way.
Next we compule a singular value decomposition [(Golub
and Van Loan, 1983]: let

B0\ = Z1Q1

where the matrix on the left has been computed from its
known factors and those on the right are the singular
value decomposition factors. Z, and , are orthogonal
arrays of the appropriate sizes. L is an Nx N, matrix,

I =[¥ 0]

where X' is the ¥x N diagonal array of singular values.
and O; is a Nx3 array of zeros. Notice that these two
computationally expensive factorizations need be done
only once per seamount. Now define the 3x N, matrix B,
by

B,= B,Q:\ 0

When these factorizations are substituted into (37) we
obtain

where
C= (—BIB,+ A+ uX'T) QTN Q] WwBld - Bip:
= (=BjB,+ A +uI'T) !
~wQiN QfBld+ QIN Q/Bip)
= (BB 4+ N+ uX'E) Ty, — v («ch

Observe that the vectors v, and v, do not depend on A or
u . Equation (C1) 1s a transformed version of (37). The
tunctions /| and /. are simply expressed in terms of the
vector ¢. which becomes the working variable during the
heavy caleulations:

L= - MAL
Sr=1Lt = ZIdw — §?

In (C1} we stll must solve an N x N, linear system for
each A, u pair. the key to the efficient realization of this
process is the fact that B, is not a square array but only
3x N, and that A/ + 4E7L is diagonal. We denote this
diagonal matrix by D (A, u) and apply the following matnix
identity, called the Sherman-Morrison-Woodbury formula
|Golub and Van Loan. 1983, p. 31

A+~ UWH "= 47— 40+ Wig i) Twig !

where 4 s any square invertible matrix, {/ and W are of
the proper sizes. but not necessarily square, and the left
side must exist  If we choose 4 = DA . u) and U =
-W = B(’, then
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-BiBy+ N+ uZT'T) !
=D'+D'Bi(—-BD'B)'BD" (CD

The reason that this rearrangement represents a massive
computational saving is that the matrix inversions in the
expression are either of the diagonal matrix D (A, u) and
hence trivial or of the matrix (/ — ByD 'Bl ) !, which is
only a 3x3 symmetric array. When N, is large. the
number of computer operations to evaluate ¢ using (C2)
and (CD) 1s approximately 13N,. with N, = 150, this
represents a factor of nearly 300 improvement over the
equivalent calculation using (37).
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Frequency Dependent Polarization Analysis of High-Frequency Seismograms
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We present a multitaper algorithm to estimate the polarization of particle motion as a function of
frequency from three-component seismic data. This algorithm is based on a singular value decom-
position of a matrix of eigenspectra at a given frequency. The right complex eigenvector &
corresonding 1o the largest singular value of the matrix has the same direction as the dominant
polarization of seismic motion at that frequency. The elements of the polarization vector 2 specify
the relative amplitudes and phases of motion measured along the recorded components within a
chosen -equency band. The width of this frequency band is determined by the time-bandwidth
product of the prolate spheroidal tapers used in the analysis. We manipulate the components of :
to determine the apparent azimuth and angle of incidence of seismic motion as a function of fre-
quency. The orthogonality of the eigentapers allows one to calculate easily uncertainties in the
estimated azimuth and angle of incidence. We apply this algorithm to data from the Anza Seismic
Telemetered Array in the frequency band 0 < f < 30 Hz. The polarization is not always a smooth
function of frequency and can exhibit sharp jumps, suggesting the existence of scattered modes

within the crustal waveguide and/or receiver sile resonances.

1. INTRODUCTION

The polarization of particle motion as measured by a
three-component seismometer has been studied by a
number of straightforward methods, most simply by trac-
ing the projection of the motion as a function of time onto
a chosen plane of reference. Although useful to illustrate
the particle motion of simple arrivals, this practice is quali-
tative and less useful with complicated signals.

The problem of extracting a particular type of wave
(e.g.. P. SH . Rayleigh) from a noisy background has been
studied by correlation techniques and special filters [e.g..
Kanasewich, 1981, Archambeau and Flinn, 1965, Vidale,
1986]. Most of these techniques are designed for time
domain analysis and implicitly assume that the waveform
has essentially the same polarization over all or most fre-
quencies. Samson [1977, 1983a,b,c] describes a method of
estimating the polarization as a function of frequency.
This is important for the analysis of seismic records. The
seismic waveforms of local and regional distance events
are often superpositions of direct, refracted, reflected, and
scattered waves, with no guarantee that the polarization or
phase are constant in frequency. In the presence of strong
scattering, one might not expect a respectable "pure state”
polarization at any frequency. Alternatively, coherent
addition of scattered waves within the crustal waveguide
will produce traveling modes whose signature in extended
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body wave codas may be a well-defined polarization and
phase that varies with frequency. The distinct spectral
peaks seen by Park er al. [this issue] in seismic spectra
observed on the Anza Seismic Telemetered Array [Berger
et al.. 1984] suggest that waveguide modes may be evident
in the complex waveforms of events at epicentral distances
of 100—-250 km.  Inhomogeneities in the crustal
waveguide can lead to scattering and couphng of these
propagating modes (see. e.g.. Kennetr [1986] and Odom
{1986] for a description of these effects) which will, n
general, cause frequency dependent scattering In such
cases. it is more useful to determine the type of seismic
motion from its polarization signature. as in the study of
Vidale [1986]. than to attempt 15 1solate phases

In this paper we develop and demonstrate another algo-
rithm for determining the frequency dependence of the
polarization of high-frequency seismic records. We have
used multitaper spectral analysis [Thomson, 1982} 10 esu-
mate the spectral density matrix S(/) of Samson [19834]
This has several advantages. By employing prolate
spheroidal wave functions as tapers (instead of cosine or
boxcar tapers) to obtain direct spectral estimates, the ele-
ments of the estimated spectral density matrix will be less
biased [Lindberg. 1986, Park et al.. 1987]. It is also not
necessary to apply a moving average to the density matrix
estimate to smooth it; smoothing 1s obtained by summing
the eigenspectra of each component of motion (see equa-
tion (3)). Using multitapers to estimate the spectral den-
sily matrix is more suitable for very short records, such as
those which include a single seismic phase. This is
because data are not discarded by applying a single bell-
shaped taper to the record. (A similar method has been
independently developed and applied to magnetometer
data by Lanzerotti et al. [1986].)

We analyze a number of three-component records of
seismic codas. In these observations the source pulse has
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been dispersed and scattered within the crust. In an ideal-
ized picture the shape of the source spectrum is retained
in the shape of the coda spectrum, but the spectral phase
is randomized by scattering effects. Despite this random-
ized phase, one might expect the particle motion to retain
the polarization behavior of the type of wave motion dom-
inant within a selected frequency band. Polarization
analysis in the frequency domain offers an opportunity to
characterize the signal better. With three-component data
we have potentially three independent polarizations. If
scattering is not great, a single polarization will predom-
inate. This assumption is often true for the P wave coda.
If, for instance, interaction with crustal structure decou-
ples SH and SV motion, there may be two principal polar-
izations in the § wave coda. The algorithm we describe in
this paper offers a quantitative criterion for identifving the
single dominant polarization.

In section 2. our multitaper polarization analysis
method is described. We apply the algorithm to a syn-
thetic pulse example in section 3. In section 4 we show
examples from the P wave codas of data observed on the
Anza Seismic Telemetered Network. Section 5 summar-
izes our findings. Uncertainty estimates for polarization
angles and phases are derived in the appendix.

2. POLARIZATION ANALYSIS WITH
THE MULTITAPER ALGORITHM

Polarization analysis involves delermining the eigen-
structure of the spectral density matrix S(f). Suppose
one has three-component data recorded in the time
domain of the form

x ()= ') x). xMn t=nr.n=01... N-1

where  is the sampling interval, N+ is the length of the
time series. the coordinate system is right-handed. and
x'(¢r) is the vertical component. If the jth record x' (1)
has the frequency domain representation = (/). the spec-
tral density matrix S (/') has components

S ) =El (=)
where £ denotes the expectation operator. Samson
[l983a] forms an estimate of the speciral density matrix,
S /), with components

S U= UNN) iy =1.2.3

where

-
y (/)= —&l.— 2 w.x ntde T (1)

w0

is a discrete Fourier transform of the jth component of
x (1) and |w, ).\ ' is a chosen data taper. The matrin S(/)
is then smoothed in the frequency domain by applyving a
moving average, and the eigenveclors and eigenvalues of
the smoothed matrix are found.

To apply the multitaper algorithm to the estimation of
S(/). one employs a set of K prolate spheroidal wave
function “eigentapers” v (N. W), k=0.1,. . K--1.
which are optimally resistant to spectral leakage from out-
side a chosen frequency band of width 2W [Thontson.
1982, Lindberg, 1986. Park et al.. 1987]. For
k=0,1.... K —1 the spectral estimates

AN
}_‘ulu‘) - W!T 2 ‘,’:Ll(N‘ur)v\.:(nT)‘, dzfn: )
o0

of each component of x(r) can be made. Then a mulu-
taper estimate of the spectral density matrix is

% MY (f) - M(S) ()

where superscript H denotes conjugate transpose and
AU U s
}.‘(I) ) L(2) RN S
Mo - | :(f i1 :(/) ¥ :(/)
WU ¥R w0
The value of K. the number of eigenspectra used.
depends on 2W, the width of the frequency band in which
the spectral energy at frequency / is concentrated. The
K =2NWs: —1 lowest order eigentapers possess sufficient
spectral leakage resistance to be useful [Slepian, 1983].

To investigate the eigenstructure of S (/). we perform a
singular value decomposition M(f)=U-D-V#_ where U
is a K x K unitary matrix of left eigenvectors of M,V is a
3 x 3 unitary matrix of right eigenvectors v, of M, and D
is a K>3 matrix with D, =d,. j=1.2.3. the singular
values of M, and D, =0 for i = j [Golub and Van Loan.
1983]. The polarization vector Z is the right eigenvector
corresponding to the largest singular value of the matrix
M. It specifies the direction of particle motion at fre-
quency f which contains the largest fraction of seismic
energy [Samson. 1983b6]. The components of i can be
complex. allowing for phase lags between components.
Phase lags between components represent elliptical particle
motion. Our ability 1o identify Z with the principal polari-
zation of motion at J can be qualitatively assessed by
comparing the singular  values d; > d. : d.. if
d; >>d>.d;, the polarizalior Z=v¥, is well determined.
We can use the ratio of the singular values to estimate the
uncertainty in Z and any quantities we calculate from it.
The estimation of the polarizaticn uncertainty follows the
derivation of Park and Chave [1984] and is outlined in the
appendix. If d,=d.>>d,. there is a strong possibility
that coherent seismic motion at f, exists al 1wo separale
polarizations. The dot product \“i'-€3= 0 by virtue of the
singular value decomposition, but this orthogonal relation-
ship need not carry over into the seismic polarizations. In
an S wave arrival, one expects St and SH motion to be
orthogonal to first order in most situations. but the super-
position of other signals (e.g.. reflected P arrivals) need
not have orthogonal polarizations.

If d,>>d,.d;. the three-component particle motion
x(r) in the neighborhood of frequency f can be
represented by the real part of Rie °'", where R is the
amplitude of motion. We can adjust the phase of # so that
R is real. If thery exists a phase & such thatZe is purely
real, then all motion described by Z lies along a single line
in three space. More generally, particle motion will follow
an ellipse confined to the plane spanned by the two real
vectors Re(#) and Im@). If this ellipse is strongly
elongated along its major axis, reasonable horizontal and
vertical azimuths can be found. If the wave type is
known, such as a P wave, then the propagation direction
can be determined. Strongly elliptical polarization suggests
modelike particle motion (for example, a Rayleigh wave)
with a poorly defined angle of incidence.

We can project the particle motion described by the
complex unit vector Z onto an ellipse in the horizontal
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Fig. 1. Diagram to illustrate the definitions of the polarization
angles 8, and ;.. The azimuth &, is restricted to [-180°,
180°] and is measured counterclockwise from ¢,. The angle &,
is chosen by determining the maximum horizontal displacement
of the particle motion for which ), will fall in the range
0<#, <9° The ellipticity of the particle motion is defined by
the amplitudes |z, |z,]. |z;| and the phase angles &, and &,
(defined in text).

plane which is defined by z, =% (€, 7)é,, where
é,=(1,0,0). The major axis of this horizontal ellipse is
taken to be the principal direction of horizontally polarized
motion. To find the azimuth of the major axis, we deter-
mine the point of greatest displacement for the projection
zy in the horizontal plane by finding the maximum value
of :

‘Re @ e)|? (4)

If the components (z;.z:.23) of Z are expressed in the

form z, = |z,le"" | this is equivalent to finding the maxima
of

|z,]2cos? (2 ft+d5) + |z31%c0s (2m f1+3) (5)
The extremes of this expression, remembering
lz,)%8in 26, + |z1]%sin 203 = Im[z3+2¢] (6)

are found when the phase angle # defined as #= 2w/t
takes the values

5

0= —lharglzf+z¢] + % (7

where ( is an integer. Let [ be the integer closest to zero
which minimizes (5), the horizontal displacement, and for
which Re(z)) < 0. Define the phase angle A, to be the
value of 8, for this {. Once 9, has been determined, the
horizontal azimuth of the major axis ¢, measured coun-
terclockwise from é,= (0,1,0) can be defined as

Relzye *)

Oy =tan’! ~
Re(z;e 1)

= Re(tan '(zy/z,;)) (8)

The range of the arctangent function is 0°< ©,, < 180° if
Re(z,z7) <0 and —-180°< 8, < 0° if Re(zyz) =2 0. If
the particle motion is P like, ®, can be interpreted as
pointing in the direction of the wave source. A represen-
tation of an elliptical motion for which &, < 0 is shown in
Figure 1.

Another useful quantity is ¢;,—d,=d¢,y, the phase
difference between the horizontal components of particle
motion. If &,—d;=0° or 180°, the particle motion is
predominantly linear. The value ¢;— &= 90° represents

elliptical motion with the major and minor axes oriented
along the axes of the instruments. If z,= +iz;, the parti-
cle motion is circular, with no definable azimuth. In this
case, the uncertainty in @, given in the appendix, goes to
infinity as it is proportional to |z§+z§|"".

The expressions relating horizontal to vertical motion
are similar. We want to find the angle &, made with the
vertical by the major axis of the ellipse defined by
Re(@e /'), Define the phase angles

0, =2mft =—tharglzf+z3] + _mz_rr 9)
where m is an integer and z3=:7 ~ z{. The phase angle
#, is the value of #, at an m for which the particle
motion displacement is maximized. The angle of
incidence is

Relze ']

©, =tan ! ”
RC[ZHC’ Yl

(10)

where Imzy 22 0. The absolute value is taken to restrict
©, to lie between 0° and 90°, the usual convention for
the angle of incidence (Figure 1). The phase lag between
vertical and horizontal motion can also be defined. Define
d =0y — ;. Since the end points of the major axis of
the horizontal motion ellipse correspond to 6, and
#y; + ., we can restrict the range of &, to (—90°, 90°).

3. A SYNTHETIC EXAMPLE

We first illustrate the definitions of @y, & . &,y . and
b,y in a synthetic example. We constructed a three-
component record (Figure 2) from a sum of cosinusoids:

1)0 .
xHn7) = / 0’cos %{)— cos (2w fnr — '—;é)
100 . .
xn7) = / t)cos{‘“—zé— sin l% cos (27 fn) (1)
100 - .
xHnr) = ’zo sin _2‘0£ sin 28.(1)_ cos (27 fnr)
where n = 0.1,...N—1 and the sampling interval is
+=0.004 s. The polarization vector of this signal can be
written immediately as .-
. Polarization test series
i 10+
0 component 1
-10 R
M component 2
_.20 -
-30+ component 3
40
1 1 1 L 1 i
0.0 1.0 2.0

time(sec)

Fig. 2. Polarization test series.
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2N N o A Y, it e i A S
(/) =]cos 80,() ,cos 20 sin 80 ,sin 20
. 1 _.L
sin :810 (12)

where &, =0 and &, = (—7f),50. Figure 3 shows the
results of a multitaper polarization analysis for frequencies
0< f < 30 Hz. The uncertainties are plotted as one stan-
dard dewviation error bars in this and succeeding figures.
Figure 3b shows the three scaled singular values as a func-
tion of frequency. The principal polarization appears well
determined. The amplitude spectra for the three com-
ponents are plotted in Figure 3a. The angles @, and &,
are plotted in Figures 3¢ and 3d. The angle &y is not
well determined near zero frequency, as the horizontal sig-
nal amplitude is dwarfed by vertical component energy.
The apparent horizontal azimuth ¢, "wraps around” from
180° to —180° at 20 Hz and jumps 180° at 25 Hz. The
former jump is obvious: the latter is an artifact of ¢,
passing through 90°. The phase angle &y, . estimated
from the synthetic record, has a value of 0° or + 180°, to
observational accuracies. These values correspond to rec-
tilinear motion and are dependent on the quadrant where
the horizontal azimuth is directed. The phase lag &,
between vertical and horizontal components is well deter-
mined everywhere except very near zero frequency where
the horizontal component amplitude vanishes. The ellipti-
city of particle motion disrupts the linear trend in ¢, , as
shown in Figure 3e. At 25 Hz, é,, = 90° and the particle
motion is an ellipse with major and minor axes oriented
horizontally and vertically, respectively. Therefore

@, =90° 2. 25 Hz. At higher frequencies, ¢, > 90°. the
relative sign of vertical and horizontal motion reverses,
and the particle motion ellipse "tips" in an opposite
manner relative to its orientation for &, < 90°. This
causes the observed 180° jump in apparent horizontal
azimuth ©,. This example suggests that one should use
caution in interpreting the angles ¢},, and &, wherever the
particle motion is nearly fully elliptical, i.e., when &, or
&y is within 20° of +90°.

4. DATA EXAMPLES

We illustrate this method of determining the polariza-
tion as a function of frequency with several examples. We
analyzed several waveforms which were recorded on the
Anza array after an earthquake that occurred at
0521:39.5 UT, September 9. 1982, with hvpocenter posi-
tioned at 32.93°N, 115.85°W, and depth 4.2 km. The
magnitude M, was determined to be 4.4. The event was
located near Svperstition Mountain, California, on the
western edge of the Imperial Valley. The earthquake was
recorded on only four stations in the array (PFO, KNW,
FRD, and CRY:; see Berger et al. [1984] for the definitions
of these three-letier acronyms) as the event occurred prior
to the completion of the array. The hypocenter was
roughly 100 km southeast of the array. The m=1 com-
ponent is the vertical seismometer output with positive
motion defined as up. We choose the m =2 component
so that positive motion points 45° east of north. Positive
motion along the m = 3 axis is directed 45° west of north,
forming a right-handed coordinate system. Let the angle
¢, be measured counterclockwise from the primary hor-
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izontal axis {(m=2). If the wave propagation is along a
straight fine connecting the source and receiver,
-85°> @, > —98° for the four stations. The first 30 s
of recorded motion for this event are shown in Figure 4.
along with range and azimuth information (azimuth is
measured counterclockwise from N45°E). Both § and P
arrivals are extended wave trains, although the § energy is
more concentrated in lime. An inieresting feature of this
event is the small precursor to the main P arrival, shown
in the enlarged detail for stations FRD and CRY in Fig-
ures Sa and 56. This waveform corresponds to a lower
crustal phase.

Polarization analysis reveals that the first arrivals have
complicated polarization signatures. The time window
taken is short (1.6 s}, corresponding to a Rayleigh fre-
quency 1, (V7) of 0.625 Hz. Analysis using seven 4rr pro-
late tapers averages energy over a band of width 8 (VrJ,
so that all of the estimates shown represent an average
over a S5-Hz frequency band. If the true polarization
varied significantly over this bandwidth, one would expect
G, Oy, by and by, o be relatively poorly determined.
The results for FRD are shown in Figure 6. The singular
values o> and d. displayed in Figure 64 show local maxima
at several places in the spectrum from 0 to 30 Hz. Max-
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Fig. 5. (a) Plots of precursory waveform observed on station

FRD. (b Plots of precursory waveform observed on station
CRY. The portion used for spectrum analysis is bounded by
dashed lines. Both horizontal components at station FRD exhibit
visible 60-Hz power line noise. The spectral leakage resistance of
the 47 prolate eigentapers used in the analysis guards against bias
in the frequency band of interest.

ima at 2.5, 7.5, and 14 Hz correspond to boundaries
between distinct spectral features (Figure 6a). All the
maxima below 25 Hz correspond to frequencies at which
one or more of the polarization angles change rapidly.
Horizontal motion is roughly rectilinear below 13 Hz, but
its azimuth is variable and significantly different from the
nominal azimuth of —87°. In fact. the largest amplitude
signal, from 8 to 13 Hz, is oriented clockwise 125° {rom
the primary component, a deflection of nearly 40° from
the nominal P wave arrival azimuth., The phase lag
between horizontal and vectical motion is alternately posi-
tive and negative in adjacent frequency bands but is never
more than partially elliptical. The angle between vertical
and horizontal motion, which can be interpreted in this
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case as the nominal angle of incidence. varies smoothly
with frequency in Figure 6e, with @, --25° 30° for
/S <10 Hz, and ¥, = 15° above 13 Hz.

Figure 7 shows an analysis of the small amphiude P
precursor observed at station CRY. The variation of the
largest singular value d, with frequency shows four fre-
quencies (2.5, 7, 12, and 16 Hz) at which the principal
polarization vector is poorly determined, and there is a
peak in d,. Each of these peaks in d, occurs where there
is an abrupt change in the three-component spectra and in
one or more of the polarization angles. Although the
estimated uncertainties are larger than those in the fast
example, the variability among frequency bands is cleurly
visible in Figures 7¢c—/. Motion in the horizontal plane iy
dominantly elliptical below 14 Hz, but particle rotation
proceeds in opposite senses in the two frequency bands
25Hz €< f<7Hz and THz < f <14 Hz. The azimu-
thal angle ©),, hovers near the value expected for the epi-
center (—85°), but our synthetic example in Figure 3 sug-
gests that this may be due to the —90° phase lag between
component motions, At higher frequencies. including the
substantial spectral peak at 18-20 Hz. the observed hor-
izontal azimuth of particle motion is roughly transverse to
the arrival azimuth, as though the energy at these fre-
quencies were SH in character. A better interpretation is
in terms of side-scattered P energy, as the vertical
azimuth of particle motion @, remains in the 20°--40°
range across all frequencies in Figure 7¢.

Similar behavior is observed on stations PFO and KN\NW.
The nature of this polarization behavior is quite puzzling.
It is unlikely that instrument calibrations are at fault. A
timing error among components would result in a lincar
drift in the relative phase angles. similar 1o that shown in
Figure 3. There are no poles or zeroes in the instrument
response over the frequency region shown. A perturba-
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Fig 6. Amplitude spectra and polarization angles for precursory waveform observed at statton FRD. Sohd/dashed

line conventions are identical to those of Figure 3.
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tion in the response filter characteristics would have
difficulty mimicking the Japparent boundaries between
spectral processes. Moreover, we show below that the
relative polarization shift from frequency band to fre-
quency band varies greatly within the P coda. This argues
for a signal-generated effect rather than an instrument
effect.  This behavior may reflect the modal structure of
an intercrustal head wave in a stratified crust.  Another
interpretation is in terms of resonant vibrational modes in
the earth structure near the receiver. Structure of scale
lengths  100—200 m could account for the higher-
frequency resonances observed in Figures 6 and 7.

We performed experiments to see if such resonant
behavior could be found in the P codas for this event.
When the entire coda was used for polanization analysis,
the results were poor. The three-component scismogram
recorded at station KNW is shown in Figure 8. Figure 9
presents polarization data from the 14-s P wave coda.
There appear to be competing signals at nearby frequen-
cies, creating either rapid variations in the polanization,
which are difficult to interpret. or else large uncertainties
in the polarization. Likewise. the presence of both St'-
and SH-polarized energy in the S arrivals made the
idenufication of a “principal” polarization uncertain.

We chose, therefore, to analyze the P codas of these
records 1n successive 2-s (500 sample) segments. We
ohserved what appear to be resonances over 4--6 Hz fre-
quency bands and vanations in polarization over time that
suggest the arrival of P energy which has been scattered
within the crust. The results of a polarization analysis of
the first, fourth, and sixth 2-s time segments of the P
wave coda recorded at station KNW are shown in Figures
10--12 The growth of the "noise” singular values , and
d. as the time window moves through the coda suggests
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Amplitude spectra and polarization angles for precursory wavetorm observed at stabon CRY . Solid/dashed

an increase in scattered energy. The most prominent
features in the spectra of the principal polanization com-
ponents are the spectral peaks near 5 and 14 Hz. Com-
parison of the values of @, in the time windows indicates
that there is a boundary between two distinct spectral
processes at 7—7.5 Hz. The 7--14 Hz process is character-
ized by dominantly rectilinear horizontal motion and stee-
ply vertical particle motion. The relative phase angles &,
and &y, for the lower-frequency process exhibit more
variability. Within a 2-s time window the horizontal
azimuth varies only slightly within the 0--7 Hz frequency
band, with more shallow vertical angles. Figure 12¢ shows
that ¢, > 60° in this frequency band. which may indicate
SV-converted motion. Particle motion at frequencies
greater than 15 Hz bears little relation to the higher-
amplitude low-frequency signal and often cannot be inter-
preted in terms of P-. §}'- or SH -polarized motion travel-
ing directly from source to receiver.

Station K\W
5000
ol YERT WM *“‘" r%‘ ,.Wllﬂ% *Nm f
5000
10000 MRk ~~M*H~\W~W\’MNWHM"M'*'4 f\“f’vff‘.‘.
15000 '
40000 NASW *—w\\ﬁ 'li‘\'l'\‘,*"\‘ “ ,\vn)“}(.-.g‘ 0‘/ }““u'n,'
4 6 s} 10 12 14 6 5] 20

time(sec)
Fig. 8 Three-component seismogram tor Superstition Mountain
event observed at Anza station KNW. The 14-5 segment chosen
for polanzation analysis 1s within the dashed lines
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The similar trequency dependences of &, and ¢, in
these 2-s time windows contrasts with the absence of a
clear pattern in the larger time analysis shown in Figure 9.
Similar effects are found when records from the other
three stations for this event are analyzed. This is not
surprising when one notes the large variation of polariza-
tion among the three time windows shown in Figures
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10—-12. The azimuth of the epicenter has O, = —92° (ie..
clockwise) from the second component. The horizontal
azimuth ¢, of particle motion s, for 7.5 Hz
< f <14 Hz, always oriented more to the south. with
values that vary among time windows by 40° or more. At
J < 7 Hz. several of the time windows tested were con-
sistent with —92° relative azimuth, but the fourth and
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sixth segments, shown in Figures 11 and 12, show particle
motion whose horizontal orientation is nearly pure east-
west. We take this variation as evidence for the arrival of
scattered off-azimuth P energy.

A detuiled interpretation of these results is beyond the
scope of this paper, but we can draw parallels with recent
studies of high frequency seismic spectra.  Sereno und

(a)

aompD tude spectra

§1

ERRE . n

CronLerry L)

Orcurr {1985] have shown that the extended P, wave train
observed in ocean bol.om seismic data can be modeled by
reverberations in the oceanic sediment layer and overlying
water column, buttressing their comparison by demon-
strating a simple pattern of spectral peaks corresponding to
leaky vibrational modes. Bard and Bouchon [1985] have
shown spectra from seismic events for which the retrieval
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Fig 12 Amphitude spectra and polanization angles for the eleventh and twelfth seconds of the 14-s P coda segment
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of simple source parameters like corner frequency and
high-frequency roll-off is contaminated by a high-
frequency resonance which they model as a reverberation
in the low-velocity surface layer. The apparent polariza-
tion resonances observed in the P wave codas of the Sep-
tember 1982 Superstition Mountain event probably argue
for an even more complex structure than was postulated
in these studies.

The interpretation of the coda using resonance models
may offer a more direct method for characterizing near-
receiver structure than time-domain models of scattered
waves [e.g.. Saro. 1984). If the resonances of the struc-
ture beneath one’s receivers are known, we can hope 1o
determine betler the spectral shape of the original seismic
source. If we model the response R{/.Z) of the crustal
structure local to a receiver to waves traveling in the
lithospheric wave guide with frequency f and polarization
i. we expect observed three-component amplitude spectra
L (/) 1o be found by integrating

l'(f)=fRU‘.i)sU'.i)d!2 13)
i

where s(f.Z) is the amplitude of the impinging signal.
We integrate Z over the lower half of the unit sphere in
order to account for energy arriving from all vertical
azimuths and out of plane scattering. In the example of
Sereno and Orcurt [1985). R/ .7) was calculated for a sim-
ple layered model. For arrays (such as Anza) positioned
atop a heterogeneous medium. constraints on R(/.Z) can
be found empirically using a number of events at different
azimuths.  Determination of R(s.Z) may be helpful in
evaluating the earthquake hazards of a potential building
site, especially as polarization analysis specifies both
seismic amplitude and particle motion at the recording
site. More research is necessary to determine if such a
project is feasible. The above examples suggest that
s (f 1) varies significantly within the coda. complicating
the determination of the near-receiver resonant structure.

5. CONCLUSIONS

We have devised a multitaper algorithm to determine
the polarization of particle motion as a function of fre-
quency and applied it to data recorded on the Anza
Seismic Telemetered Array (Berger et al.. 1984] We form
a matrix of eigenspectra of three-component records and
perform a singular value decomposition to estimate the
complex-valued unit vector Z whose components specify
the sense of particle motion in the plane defined by the
two real vectors Re() and Im(Z). We manipulate the
components of Z in order to specify four angles. The
angle &,y represents the relative phase between the com-
ponents of horizontal motion. The angle &,y =0° or
+ 180° if the particle motion is rectilinear in the horizontal
plane. and &, = +90° if the motion is elliptical and
oriented along the component axes. The phase angle &,
i1s the relative phase between horizontal and vertical
motion. The apparent azimuth ¢, is defined by the max-
imum displacement of the horizontal projection of the par-
ticle motion ellipse. It is measured in the counterclock-
wise direction from the first horizontal component.
Finally. an angle of incidence &, of the particle motion is
estimated. The uncertainties in these polarization angles

can be estimated from the singular value decomposition
used to obtain Z (appendix).

The variability of the spectra and polarization over
0 < J < 30 Hz suggest that the P coda observations can
be separated into several distinct varieties of seismic
motions, each occupying a separate frequency band. This
behavior suggests that in some cases it may be more
appropriate to model the P wave coda as a set of resonant
modes caused by near-receiver structure rather than a
number of randomly scattered compressional pulses. Evi-
dence for scattered energy is not lacking, however, as the
principal polarization accounts for a smaller proportion of
the total seismic energy late in the P coda, accounting for
only 60—65% in some frequency bands. We also observe
that the apparent P wave arrival azimuth can vary by up
to 50°, both between adjacent frequency bands and in
adjacent time windows. Both rectilinear and elliptically
polarized signals are found. often coexisting in the same
time window in adjacent frequency bands. We find that
the apparent modal structure of the signal polarization
breaks down if the length of the time window is much
greater than 2 s, suggesting incoherent excitation by direct
and scattered seismic waves.

We are currently investigating the polarization behavior
of the data recorded at each site in the Anza array. We
want to use the polarization information to obtain better
estimates of the seismic source spectrum. Such an
endeavor requres that one be able to identify the factors
causing the apparent jumps in polarization, both as a func-
tion of frequency and time.

APPENDIX
FORMAL UNCERTAINTY OF POLARIZATION ESTIMATES

We estimate the uncertainties in the angles 0, . &,
&,y . by from uncertainties 82 (/') in the unit eigenvector
Z{/). which represents the principal polarization of particle
motion at frequency /. The derivation of the rms expec-
tation of 62 can be found in the work by Park and Chave
[1984]. We only define the problem and state the results
here. The vector Z=v,. the right eigenvector of M
(defined in (3)) associated with largest singular value d,.
The uncertainty o is estimated from the two smaller
singular values

oo _K
K--1
where K is the number of =igenspectra used in forming A.

The covariance matrix for the first-order unceriainty %
has expectation value

(di-di) 2 (A

o

B G =T ¥ i )G (AD)
Kdi VAN I

It is also true that 82 X &% =0. The & symbol denotes
the tensor (outer) product of two vectors. Since

Si® (62)7, = bz6"

"

we have complete information on the formal uncertainties
of the components of the principal polarization. Note that
since (8%)*-Z =0 asZ is a vector of unit length, 8% is com-
posed of ¥, and ¥;, the right eigenvectors associated with
the "noise” singular values d,, d,.

JY R —
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Given (A2), we cun determine the formal first-order
uncertainty of any well-behaved function of I =
(z21.23.23) by = da1—by = arglz,) —arg(z;) to within an
additive constant, Since

i (5%, —82 2
5, = 2 : LA A LA (A3)
T
i 8z, Sy LN E
iSd =‘/~L,,—*2Re ! ‘-‘ | ‘11
ENE BOSR) 5l
(Ad)
Since By = Reltan "zy ),
of z o Pt Fog
80, = Ref———= "4 -1H=Re = > ] (AS)
iy o Ty-cf
5o that
186, 7 = Alzd =28 ] 207 8z
— 2Re [:3‘:_ o8z ‘8:1 ] :IZ Iﬁ:;i: ) (A6)
Note that |86, |7 -—co as z,—iz;, i.e., circular polariza-
tton.

The uncertainties of the vertical polarization angles ¢,

and #,, are similar. With &), gnen by (8). where
"*'f - 27, we use the relation 83 =3 '(z Bz 28z o
find

), = Relz (A7)
and

DYSAIENRTY - R L —
lrp-zillzfezi-of

where
XY@z = 210052010 oz ez izl )

- ’Rc(:’:,:» 5282 ) - 2Re (:‘:[‘:f Sz8zt)
- 2Rellzylfzazt 82827 ) (A9)

The restriction of the argument of the arctangent to be
positive in the definition of €, does not alter its uncer-

tainty. Following (A3) and (A4), the uncertainty of ¢,
1S
- (S:
Sy ~ Im{22 - 2L (A10)
: o
and
oy = /ll—l‘%ﬂ’—J (AID)
) I3 2

where X is given in (A9).
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Summary. We present a new method for estimating the frequencies of the
barth's free oscillations. This method is an extension of the techniques of
Thomson (1982) tor finding the harmonic components of a time series.
Optimal tapers for reduang the spectral leakage of decaying sinusoids
mimersed inowhite noise are derived. Multuplving the data by the best K
tapers creates A ume series. A decaying sinusodd model s fit to the K time
series by g least squares procedure. A statistical F-testis performed o test the
it ot the decaving sinusond model, and thus determine the probability that
there dre coherentoscillattonsin the data. The Fotest s performed at a number
ot chosen trequencies. producing a measure of the certainty that there is a
decavime smusond ut cach trequency . We compare this method with the con-
ventiona! techmque emploving a discrete Fourrer transform ol a cosine-tapered
nme-ertes. The multiple-taper method is tound 1o he a more sensitive detector

of decaying simusods in g tine sertes contaminated by white noise.

Kev words: multiple-taper. tiee osallutions, spectial analysis

1 Introduction

The tree osallations ot the Farth appear as decaving sinusords 1 the records of mstruments
in the avartable Tow Crequency sesmic anay s dnternational Deploy ment of Accelerometers.
hereatfter reterred to as IDAL and Global Digital Seismic Network, hereatter referred 1o as
GDSNY #Agnew ¢l 19700 Eogdahll Peterson & Orame 1982y Intormaztion about the
stracture ot the Barth can be mtened trom the tregquencies. decay rates and amplitudes o
these onaitlutions

Conventionally - these Charactensiios of 1the decay g sinusonds are estimated from a direct
spectral estinate of the data using a cosme taper (Harns 1975 Dahlen 19820 Lindberg 19801,
or by prodiang sphenaal harmonicweighted sums of the diect spectral estimates made
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from each station’s record (stacking” or “stripping’) (Gilbert & Dziewonski [975). There are
several difficulties withi using a single cosine-taper in the harmonic analysis of tree oscillations
The time series analysed in free oscillation studies are non-stationary: they are abo contam-
nated with noise. The cosine taper is symmetric and appropriate for stationary 1une-series: i
is not a good taper for minimizing the spectral leakage of decaying sinusoids immersed
noise. The cosine taper also discards much of the data at the ends of the time series. paru-
cularly at the beginning where the signal-to-noise ratios of the free oscillation records are
targe. This is not desirable. In addition. applying a cosine tuaper to reduce spectral leakage is
purchased with greatly increased variunce (e.g. figs 7 and 8 of Dahlen 1982). Use ot the
cosine taper roughly doubles the variance. or equivalently ., halves statistical efficiency of the
estimate (Jones 1902). Another drawback of a cosine-taper direct spectral estimate is that it
does not discriminate between oscillations of constant phase and frequency tharmome
oscillations) and broad distributions of spectral energy caused by other processes.

To overcome these problems, we have developed a method ot harmonic analysis tor
decaying sinusoids immersed in stationary white noise based on the methods developed by
Thomson (1982). A set of several ‘optimal’ tapers is created. each one designed to mininnze
the spectral leakage of decaying sinusoids immersed in white noise. while maintaining a furge
value for the ratio of tapered signal energy to tapered noise energy. Multipiying the data by
each taper in turn creates several time series. Taking the discrete Fourier transtorm of these
time series vields several complex eigenspectra (called eigencoetticients by Thomson 1982).
A decaying sinusoid model is fit by a least-squares procedure to these complex eigenspectra.
The least-squares procedure produces an estimate of the inival amplitude of any decaving
sinusoids in the data. The fit of the decaying sinusoid model at any given frequency is tested
using u statistical F-test. This gives a quantitative measure of the confidence that a phase-
coherent decaying sinusoid is present in the datu at any given frequency.

The multiple-taper method utilizes more of the data than the cosine-taper direct spectrul
estimate. and. as shown in Section 4 and the appendix. is 4 more sensitive detector of free
oscillations in a seismic record. In one example. the five singlets of (S» could be detected ma
single record of the 1977 Sumbawa event. with measured frequencies in good agreement
with those reported by Buland. Berger & Gilbert (1979), who used a six-station global array
stack. Only two of the singlet lines are visible in the conventional direct spectral estimate
employing a cosine taper.

The muitiple-taper technique for tree-oscillation analysis is desenbed in the following
sections. Section 2 introduces the functionals which are opumized o vield a family of
spectral leakage-suppressing eigentapers appropriate for an oscillation with a given attenuu-
tion rate. Functionals for decaying sinusoids in time series with and without white noise are
discussed. Section 3 introduces the statistical F-test for detection of decaying sinusoids. In
Section 4 we present u number of frequency messurements of ivolated tree oscillations using
IDA network data. Our conclusions are summarized in Section 3. An error analysis of the
medchod s included in the appendix. Readers interested primarily n the examples are
directed to Section 4. To implement the technique on a computer one needs to solve (2.19)
to design the tapers. apply (3.15) to estimate the decaying sinusoid amphtudes as a function
of frequency. and compute (3.2%) to produce an F-test plot to test tor the existence of
decaying sinusoids at any given tfrequency.

2 Optimal data tapers for decaying signals

In this section we adapt the methods described in o series of five papers by Slepian. Landau
and Pollsk (Slepian & Polluk 1961; Lundau & Pollak 1961, 1962 Slepian 1964, 1978). Their
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work involved a set of time-limited tunctions whose spectral energy is optimaltly concen-
trated within a given trequency band. These functions have been employed to design optimal
tapers for the analysis of stationary processes (Thomson 19582), We have extended Thomson's
work to produce tapers for the harmonic analysis of exponentially decaving signals. For
signals that decay exponentially with time. we obtain an optimization equation from which
one can find the daty taper w, with optimal resistance to spectral leakuge tfrom vutside
tfrequency band ot chosen width. Solving the optimization equation. one discovers that there
exists u family of dota tapers {w,(rhw it owy, (0O} with good spectral-leakage
resistance. We refer 1o the members ot this tamily as eigentapers. These tapers are eigen-
vectors of a Toeplitz matrix whose elements are values taken by the funcuon sin xx. In the
next section we produce several spectra from a single record multiplied by cach ot the
eigentapers in turn. and we show how these spectra can be combined to provide useful
intormation,

An important factor in the analyaisy of low-trequency seistmic data v the presence ot
stationary white none in the records. This was recognized by Dahlen (195210 the presence of
stationary nope determuned the opumal time-series length for estimation of pargmeters in
Dahlen’s analysis. In his work. however, the waper shapes were held fived In this study . we
extend the methods of Thomson (19823 to derive opuimal taper shapes tor any length tune
series, churacterized by a purameter depending on the signal-to-noise ratio at the start ot the
seismic record. These "nonse-cognizant” tapers have less resistance (o spectral leakage than
those designed using a procedure that ignores stationary noise. In the appendin we show how
nowse-cognizant tapers improve the sensitivity ot the eigentaper analysis if stationary nose is
present in the data.

JA DECAYING SIGNAL WITH NO NOISE

Consider tirst asignal x (1) that consists of g sum of decaying sinusoids uncortupted by noise.
Then one can represent

XU =Y pexplic ol r2 0.
!

where , is the complex amphitude of the jth decuy mg sinusord. which has angulan trequency
w, and decay rate o, In practice. one cunnot measure ¥ (1), but only the M disciete numbers
xUp).x i) x Uy ) Asume that £,= 0. and the time between samples Ar=1, . 15 1y
a comstant. which we scale 10 be umity . {6 Ar =1, then the Nvquist frequency fyyquist = =
and the angular trequency w = 27/ is defined on its principal domam - 7o) Taperng the
time series {x (1)} .;\':—01 consists of multiplying it by 4 real valued sequence {wir)) Mol the
taper). Taking the discrete Fourier transtorm of the tupered signal {.\'(le!)}'," ol vields
the tunction

N-i
Ylwy= Y expl iwrnwinx(r. (2.0

1=y
This sum may be quickly computed using the Fast Fourier Transtorm (FFT) algorithm
{Cooley & Tukey 1905: Brigham 1974). A traditional estimate of the energy content of x (1)
as u function of frequency is given by |1 (w)i? where {w(s)} .Y is @ conventional taper
(Hann. Hamming. Blackman-Harris, Morse no. 2. etc.: Harris 1978 describes many of the
popular tapers). The finite length ot the time series makes a boxcar taper implicit it w ()= 1
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in (2.1). One wishes to choose {w ()} .5 to facilitate determination of the frequency

content of x ().

The primary purpose of a data taper is to minimize spectral leakage. That is. the spectral
component of a tapered signal at frequency w should have minimal energy contribution
from outside the interval (w — §2. w + §2). where 0 < 202 < 2r is a chosen bandwidth. One
must also prevent the energy at @ from the leaking out 1o atfect parts of the spectrum at
other frequencies. Suppose that x (r) consists of only one decaying sinusoid in (@ - §2,
w + Q). with frequcacy . The tapered signal {w(1)u exp (icr - at)}‘,’v;ol should have as
much of its energy as possivle in (w — §2. @ + §2) relative to its total energy. which covers
the entire band (- 7, 7). One chooses a taper {w(r}} ‘;V:[)' to maximize the functional

W .
f [y " dw

: w-5
f= —— (2.2

>
J | v{w) Pdw
-n

where v (w) is the discrete Fourier transtorm of {x (r)w (1)} ‘,\;’0‘:

N1
Vi =u Y expl-iwnexp iwhw( exp( -ar)

=0
(Slepian 1983 describes how maximizing a similar tunctional vields solutions to the concen-
tration problem. which is important in electrical engineering.) Since our time signal is limited
to [0..¥ - 1]. there is no way to contine completely the energy of its frequency transtorm
to(w - 2, @+ ). Therefore. the value f will always be less than unity.

We expand the numerator of (2.2

G Q N-1
f v Pdw = ul? [ dw Y exp(-iwt)w(r)exp(- af)

@2 voQ =0
N-t
v Y expUiwsiw(siexp(- as)
5=0
AN-1 V-1 sin (s 1)
=2ul? ¥ 3 wilnexpt af)——- exp( as)wi(s) (2.3)
o o (s 1)

and use Parseval’s theorem to expand the denominator

" N~
J. dwlviw|?=2nut? Z wityexp( 2arf)w(s) (2.4
—_1 =0
so that (2.2) becomes dependent entirely on w(O). w(l). ....w{(N 1)and simple functions.
Detine the M-vector w = [w(O) w(l}). ... .w(N 1) the matrix A with elements

_sin QU my

a({l m)

exp( at/+m)) Lm=0.1....N

im

and the diagonal matrix B, where B, =8, exp( ey, m=0.1... . N 1.{The symbol
8,45 is the Kronecker delta function: 6, =1 it @ = b, and 0 otherwise.} Then equation (2.2)
can be written as

w-A. ~
flw)= - —— — (2.5
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To find the taper that optimizes the functional f, set the variation of f with respect to w
equal to zero

d
8 fiw:h)=—f(w + €h) =0

de €=0
for all Nwvectors h {Goldstein 1980. chapter 2. Smith 1974). Some algebra leads to the
eigenvalue problem

A-w-AB-w=0, (2.0)
where A, B are N x ¥V real symmetric matrices and the eigenvalue
A=f(w).

The eigenvalue X is always less than unity. as can be seen from (2.2). The fractional
spectral leakage of the signal at w outside the frequency band (w  Q2.w+ ) is | - X The
taper wo = [wo(0) woll) ..o wo(N 1)) corresponding to the largest eigenvalue Ag is the
optimal taper for minimizing spectral leakage. The taper w,, has roughly the same shape as
other popular tapers such as the Hann and Blackman-Harris tapers. (The taper w, corres-
ponds to the solid curve labelled “0" in Figs 1 and 2.) The largest eigenvalue Agis almost 1:
one finds that Ag= 1 (2.9 x107'?) for N = 8. Moreover. there are several eigenvalues in
the descending family Ao Ay > Ay ... > Ay _; that are very close 1o Ay and hence close to
unity. The associated eigenvectors wy,, w,, wa. .... Wy _ form a sequence of “eigentapers’,
the first few of which possess good spectral leakage resistance.

Let the decay rate o = 0 in (2.6). noting that A and B depend on a. Then (2.0) becomes
equation (2.9) of Thomson (1982): its solutions are optimal tapers for concentrating the
energy of nondecaying simusoids. As discussed by Slepian (1978) and Thomson (1982). the

4n-procie tapers: a=0

0.5F
00 =
-0.5F

-1.0

1 1 . | 1

0.0 0.2 0.4 0.6 0.8 1.0
scaled time

Figure 1. The five lowest-order cigentaper solutions to (2.6} when decay rate a = 0, and VQ = 8n. The
solid black line is the optimal taper. Higher order tapers are successively more oscitl»tory.
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solutions to (2.6) when a = 0 are the discrete N+ Wr prolate spheroidal sequences
(VRN W 5" where W= Q/2mand k isan integer. If o # 0. the solutions to (2.0} are the
eigentapers wy (7) = vV, Q;2m) exp (ar): r=0. 1. .... N 1. A spectral estimate using
these tapers is similar to the ‘“analytic continuation® of the DFT discussed in Bulund &
Gilbert (1978). In much of the following. the time-bandwidth product P= N - W=NQ 2n=4.
(In Slepian 1978, 1983, the parameter ¢ = 7« P is used.) P is usually tuken to be un integer.
but this convention is not required.

The {vﬁk)(N. WHM! sequences have severul properties that are shared with the

decaying-signal eigentapers {wk(t)}iv;o'. For example. both possess an orthogonualuty

property:

Aol , N1

> oW W (VW= S exp (- 2anwi i wy (1) =8, (2.7)
t=0 t=0

The tapers {wy (1)} ',\':_0' sample that part of the signal that decays as exp ( - ar) in an ortho-
gonal manner. Figure | shows the five lowest-order eigentapers w () = uﬁ"')(;\". W=a4N)
r=0.1.....N- 1 for astationary signal (« = 0). The zeroth-order taper {wo(r)}-3lis a dn
prolate taper. Note that the higher-order eigentapers are negative in some places and they
weight the data more heavily near the ends of the record. Figure 2 shows eigentapers for a
signal that decays by exp ( #f). where §=a7/m=1.0 Q-cycles. during the record length
T=NAtr. [One Q-cycle refers to the time required for Q oscillations of the harinonic signal.
This notation was introduced by Dahlen (1982). One Q-cycle is equivalent to an amplitude
decay of exp ( m) = 1;23]. Note the increasing amplitude towards the end of the record. as

the tapers try to amplify the decaying signal. The tapers {w, (1)} ‘,V:_O' produce the

ceccy ~g s nusoid topers =1 ON=8n

25

T

T

20

51

10

—10* 1 1 | | - 1

0.0 0.2 0.4 0.6 0.8 1.0
scaled time

1

Figure 2. The tive lowest-order eigentapers for a decay ing sinusoid that decays by exp () during the

record. Multiplying a decaying sinusoid by these tapers will concentrate its energy in s frequency band of

width 2 = 16n/V. The taper amplitudes increase exponentially towards the end ot the record to
compensate tor the signal’s decay.

>~— —————— —
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unwelcome result of amplifying the late record noise as well. so that while the signal power
remains constant with time in the tapered record. the noise power increases exponentially.
In the next subsection we will show how noise-cognizant eigentapers weight the fater data
more soberly.

Substituting {vﬁ"’(/\’. W)exp (at)}‘,\;‘o' for {w, () ‘,V:"o‘ i (2.5) and using the definition
of X. one can show that the discrete prolate spheroidal sequences and the sequences
{wi (1)} 5! have the same eigenvalues A, for any value of the decay rate o Therefore. the
kth prolate taper and the kth decaying sinusoid eigentaper have the same fractional spectral
leakage for a given value of P = QN/2n. The 2NW lowest-order eigenvalues A, of (2.6} are of
order unity, and rapidly drop off thereafter (Slepian 1983). For example. 4n-prolate sequences
have eight order-unity eigenvalues. one per Rayleigh frequency spacing (27 .V) 1n the central
region (w - 8n/N, w + 87/N). Values of A, are given in Table 1 for some examples ot Pr
prolate tapers.

The amplitudes of the frequency transforms

N -t
W twi = > wileyexpaft/Thexp (—iwr) (2.8
=0

of the five lowest-order dn-prolate eigentapers are shown in Fig. 3 over a wide range of
frequencies. (Here. record length T=N.) Substituting {v,(k)(N, Wiexplaniy- o' for
Mg (7 o' n (2.8), one finds that the functions # (w) are independent of decay rate.
Figure 3 shows the excellent leakage rejection properties of the eigentapers. There is a sharp
band-edge at frequency w =8a/T. Note sidelobe height ncreases as the order of the
taper increases. but remains 30 - 40 dB below the height of the central region even for the
fifth waper. Figure 4 is an expansion of the central peak region displaying both real and
imaginary compone:ts of the same five eigentaper transtforms W, (w). The plots of the
central region show that each Wi(w) samples the central band ¢ §2. Q) in a different
manner. The eigentaper transforms W, (w) become increusingly more oscillatory with
increasing order. The Wy, (w) are orthogonal. both within the central band

0
«:m“f dWHw) W (w) =wy - A wy
- 2

MWy s B w = A8 (29)

Table 1. Figenvalues Ag tor lowest-order £ prolate tapers

P k 1-4, P k 14,
1 0 018 3 0 1.348 x 1077
102504 1 9.245x 10"
2 0.7564 2 3.850 x 107
3 5.086 % 107
4 5.386 x 1072
2 0 5725%x10°° 4 0 2946 1071
1 2438x107 1 2.768 x 107
2 4061 x107? 2 1.210x 107
102783 3 4245x10°°
4 07253 4 5.899 x 107
S 7.496 x 107
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Figure 3. Frequency-trunstorm amplitudes of the five Jowest-order 4 profate ceentapers. The trequency
transtorms are independent of decay rate by (2.8). The sidelobes are fowest tor the optimal cigentaper.
and increase in height tor higher order eigentapers. The abscissa v in units ot wyg = 2n T, where 7 1s the
record length. There is o sharp bundedge at frequency w = $wg-

wsing (2.0) through (2% and over the entire discrete Fourter transtorm tiequency band
A

2yt J do W Wy () = by (2100
-7

by (270 In (29 and (2.10). the asterisk denotes complex conjugation.
Untortunately. these tapers are only suitable for the analysis of noise-tfree records. but
low trequency senmic data are nony  In the next section. tapers designed 1o anaby se nomy

records are discussed

2B DFCAYING SIGNAL IN WHITE NOISE

Low-frequency senmic records can he modelled as a sum ot decaving Nee osallations
immersed in noise

XED= D p eXpliwm!  amt) + uti), [ (2.1 h
m

where. as before. w,. ., and p,, are the trequency. decay rate and complex amplitude of
the mrth free oscallation. with onset wt 7= 0. and n (1) 1s a realization of a nowse process The
sum over m extends i principle over the countably infinite elastic-gravitational tree osailia-
tions. but can be taken as finite in a record from a band-limited seismic instrument. We will
assume throughout that #(¢) s a realization of a stationary . zero-mean. white noise process.
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Figure 4. Expuansion of central peak region of the tive eigentaper frequency transtorms of Fig. 3. The solid
line s the real part: the dotted line iy the imaginary part. The central peak region is increasingly more
osctllatory for higher-order eigentapers.

In  practice. the spectrum of seismic noise does not vayy much over the
frequency hand of interest ( Agnew & Berger 1978).

We determine optimal data tapers in this case using an extension of the variational forma-
ism described above. In particular. we wish to balance the need 1o concentrate as
much ot the speciral energy of the signal as possible into a region of bandwidth 20 against
the dewire to retain a high ratio of tapered signal power to tapered notse power. The
exponential asymmetry of the decaying signal tapers {w(0)} ™. ! will increase the
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amplitude of stationary noise in the later part of the record. This will degrade the quality of
the spectral estimate considerably unless the ratio of tapered signal 1o tapered noise is
constrained to have a reasonable vilue.

Assume that in the interval (0 2. @ + Q) the record x (1) is composed of the signal. a
single decaying sinusoid. plus white noise n (7):

X (1) = gexp iwt - ar) +n(r). (21
Suppose also that we have discrete samples of x (1)
{x(nt: =0. 0200008 ]

s0 that the angular frequency w€(  m. 7). We want to choose our taper (w1} ' so that
the energy of the tuapered signal

{winugexpiwr - ar)}‘,\; o (213

N (w Q0w+ Q) relative o its total energy i maximized. but now with a constraint: the
ratio of the tapered signal power to tapered noise power in (w2, w + 1) has u tixed value
The discrete Fourier transform of the tapered noise is

N o
miwl= Y nlnexpl fwnwir. (214
-0

A measure of the expected energy of the tapered noise at frequency w s

N
dmiwr|Hr=oy Y

r=0

[w ()7 (215

where ) denotes expectation vilue and o is the noise variance. The expected power of the
noise in the tapered record in (w 2.0 + Qi

w1 A
( Amiw)Hdw = 2008 Y [win]® (2.10)
You r-0

We generalize (2.3) in order to constrain the ratio of tapered signal 1o tapered noise
within the frequency band (& Q. w + Q). We now wish to maximize the funcniony)

} weAw weAw
fiw: Q. ni= +n (2070
w-B-w W w

with respect to w. where w, A und B are us defined in Section 2A. The second term in
equation (2.17) represents the ratio of tapered signal power to tapered noise power: 7 is a
Lagrange multiplier. In the limit of very large signal-to-noise ratio. e as (Jul?) (o3) —oe.
one expects n to tend to zero. In principle nis determined trom the constramt equation: in
practice we determine its value empirically. The condition §f(w: Q. n) = 0 leads 1o a non-
hnear equation tor the tapers w which maximize (2.17). This non-linear 2quation can be
solved approximately (Lindberg 1956},
Alternatively, we can minimize the functional

. w:'B-w LR
flw: 2. v)= +y (218)
weA"w w A-w
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tF Gilbert, private communcation), Solving §f= 0 leads to the equation

Aw=)\B"w, (2.4

where B' = B + vI. I bemyg the N« NV identity matnx and
A= [ fiwi o)t

The eigenvectors which correspond 1o the lurgest eigeavatues A" of (2.19) will ininimize /.

Given the decay rate a and the noise-weighting parameter v, (2.19) can he solved tor eigen-
apers (wy (12 8.0} o' When v = 0. the elements of the kth taper wy (12 6. 0) = w (1)
£=0.20 00N Toand the tapers reduce to those of Section 2A. The fraction of wapered
signal power that remains i the frequency hand (w0 Q.o+ Q)i

(W, Awhiw, " Brw )=, (2.20)
which can be caleulated trom the eigenvectors and eigenvalues of (2,191 We have tound it
helptul to think of the A; as "bandwidth retention tactorn’

We used FISPACK subroutnes (Smith o7 @/ 1970} to solve (2.19) tor its largest eigen-
vatues Ay and associated eigenvectors. We normalized the tapers fey (42 8. vty o' o thar

v
wi B ow = N fexpl 2an v nyw (nBoniw (B =58, (221

t -0
Rather than solve un eigenvalue problem tor every data series length. (2.19) was xolved for
N =128 and the tapers tor other values of V were found using spline interpolation. This
approach takes advantage ot the asymptotic relations hetween the discrete and continuous-
time tapers described o Slepian (1978). Tests using these interpolated tapers showed
neghgible degradation ot spectral leakage properties relative 1o exact solutions tor V ~ [ 2N,
For N 125 (219 should be solved directly (A, Chave. private communication). but such
shott time series are rare in free oscillation waork. The taper tansforms are compued from
the mterpolated tapers using an FFT after padding the tapers with zeroes until their lengths
were d power of two,

The preceding argument shows that vis a compheated function of the signai-to-noise ratio.
For large signal-to-noise-ratios [ul® o3, ¥ will be very small. B'= B, and the solution of
€219y v not very different from the solution of {2.0). For smaller signal-to-noise ratios, one
expects that the optimal tapers will have a v of tinite size. One could pick an incorrect value
of v for a particulur signal-to-naise ratio. but then the tapers would not perform optimally.
Useful vilues are best determined by experiment. We will show in the appendix that using
eigentapers having larger values of v results in a marked improvement in the detection
capahility ot the multiple-taper algorithm.

Some examples of noise-cognizant eigentapers are exhibited i Fig. S tor the case v = 0.01,
B=0.60and QN = 8. Note the strong asvymmetry of the tapers, with a strong emphasis on
data in the earlier section of the record where instantaneous signal-to-naise ratio s greater,
The height of the taper’s main peak increases with increasing order to compensate for the
decayv ot the signal. as shown i Fig. 2. Figure 6 shows tapers which were Jdesigned with
v=0.1.8=0.0.and QN =~8nr. The preference for the early part of the tecord is more drastic.
resulting in sigmificant weighting at the onset of the time senes. Here the variational principle
mnimizing (218 has sacrificed resistance to spectral leskage in order to raise the ratio of
tapered signal to tapered nowse. Figure 7 displays eigentapers designed with v = 0.001.
B=0.2.and QN =%n These eigentapers are for a series containing sinusoids that only decay
slightiy ina more tavourable signal-to-noise environment. Asymmetrical weighting remains

— -
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noise-cognizant tapers: f=.6 v=.01

0.0 C.2 0.4 0.6 0.8 1.0
sce'ed tme
Figure 5. Opnmal ewwentapers Tor an exponentially decaying sinusoid immensed mowhite noise. The
sinusotd v assumed to decay By eanp o 0 6m) durine the record. The noise patameter iis chosen according
1o the stgnad-enone ratlo of the date, The tapeis sample the tront ot the record where the signal-to-notse
ratio s dargest, and merease m oamplitude towirds the end of the record 1o compensate tor the signal’s

decay .

0.0 0.2 0.4 0.6 0.8 7.0
sccaled tme
Figure 6. Scquence of opumal tapers for an exponentiahy decoying sinusoid immersed in white noie
These tapers are designed tor a lower signal-to-noise ratio than those ot Figo SOand have a lager nowse
parameter v These tapers sample the data less heavily in the Tatter part ot the record where the agnal s
obscured by noie, compured 1o the tapersn bag S

_——
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Figure 8. A\mphitude of the tive lowest-order none-cogmizant cigentapers with decay paraimeter J 1o,
nuse pardtieter o2 ol and tme-bandwadth prodnct Vs2 = 8a0 The abseissa s units of wp = 2
There s sharp bandedge ot trequeney w = Jwg = 87 170 Note that the ploi s of absolute magnitude. net
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Table 2. Figenvalues Ay and bandwidth retention factors Ag for lowest order nomse-
cognizant optimal tapers.

v=001,8:06 v=01/8=06 v=0.001,8-02_ v=0018=1
k i 1, 1 A i A A A

0 0962301 099869  0.73574 098905 099729 099997 094592  0.99682
1940787 099760 0.63985  0.98003 0.99676  0.99995  0.89435  0.99227
0910363 0.99619  0.53070 0.96888 099614 099993  0.80953  0.98428
0.867487 099361 041590 095026 0.99542  0.99990 0.68406  0.96699
0808944 099006 030618 092719 099458 099975  0.52440  0.93826
0.732283% 098339 021152  0.89053 098934 099469 0.35619  0.88398

[V I NV

Values of the eigenvalues 1, ” and the bandwidth retention factors 4, for time-bandwidth product (QV = 87
and vanous values of the decay parameter 3 and the noise parameter V. Note that the bandwidth retention
parameters A, are close to 1 for small k, and are succeedingly smaller for higher order tapers. The lowest
order eigentapers have the smallest fracuonal leakage 1 ~ Ay higher order eigentapers suffer from succes
sively greater spectral leakage.

evident. Table X shows values of X and X, for tapers {w, iz 8. o)b ! tor a selection of
8 and v values. The eigenvalues Ay drop rapidly tfrom unity with increasing & The bandwidth
retention tactors Ay remain relatively constant among cigentapers of tixed g und v, This
hehaviour can be observed quulitatively in the Fig. 8 plots of the amphitudes of the frequency
transtorms Wk twigovy ot the tapers {wy (22 3. v} ,\ 0'
N
Wotw:B.ov) = Sowtndavesp [U ap Torlesp it ieen (220
ro

for 3 = 0.6, p=0.01. and QN =~z The five lowest order eigentapers have sidelohes of
comparabie height. Enlargements of the central peak regions are shown in Fig. 9.

Because A and B are symmetric. the orthogonality condition (2.9) remains valid for
noise-cognizant tapers. ising (2.2 1) However, as the nose-cognizant tapers dwy (12 8. v 4!
Satisty (2.21) and not (2.7 the frequency -domain orthogonality relation (2.10) does not

Table 3. Flements of matniy D tor o7 060 2V = 87 and
o]

- R S
k 0 1 2 3 4
0 098151 0.00183 000218  -0.00235 0.00227
! 0.00183 097130  -0.00352 0.00415  -0.00445
2 0.00218  -0.00352 095658  -0.00620 0.00719
3 000235 0.00415  -0.00620 0.93560  -0.01043
4 0.00227  -0.00445 000719 -0.01043 0.90638
forff. 0.6, QN =81 andv :0.1

— e
k 0 1 2 3 4
3] 0.86278 0.01271 001388 0.01261 0.00995

-0.01271 0.80917 0.02210 0.02322 0.02143
001358 002210 0.74322 0.03364 0.03440
0.01261 0.02322 0.03364 0.66634 0.04693
0.00999 0.01143 0.03440 0.046913 0.8821

St —
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Figure 9. vpansion of the central peak regon of the trequency transform amplitudes of the tive fowest
order eigentepers of iy B The sohd b is the real part of the trequency transtorme: the dashed hine s the
IMaginary part ut the transtorp.

hold Inats place we have

- v

(2m! ‘Iwﬁ':(w:d‘u)h"k tenBomr = N exple 2w Trfwytefooyw o) =Dy,
g r 0

(225

for k kel 1. K 1% The matin D s diagonafly domimant for smalt e, Table 3 fists

the elements ot D tor the tive lowest order eigentapers with QN = Sg g = 0.0 and 1= 001
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or p=0.1. The magmtude of the off-dingonal elements of D indicate the departute trom
orthogonality of the frequency transtorms Wolw: B.vyover { mow|

We have required that owr data tapers possess certain desirable properties. We want them
to have the ability to concentrate most of a decaying sinusoid’s energy into a given tre-
quency band. balanced against the capacity to maintai.c a high signal-to-noise ratio tor the
tapered daty in the frequency domain. This teads to a variational catculus problem. whose
solutions are o tamily ot data tapers. These tapers provide a method ot orthogonally
sampling a decaying sinusoid. in both the time and trequency domains. By sampling a decay-
ing sinusoid repeatedly in difterent ways. one can obtain superior estimates ol its frequency
and amplitude. Sigple technigques to do this, based on those outlined by Thomson (1982).
are the subject of the next section.

3 Harmonic analysis

An tmportant part ot long-pertod seismic data analysis is the detection of decaying sinusoids
in the data and the measurement of their stequencies and amplitudes. The estimation of
decay rate a v also impoitant: we plan to address this problem in fater work. In the follow-
g 1t s assumed that the @ of the decaving osallation is known or has been approximated
by some method (eg. Riedesel er al. 19800

The spectra of low-freguency seismic time-series consist of harmonic “hines” which have
been hroadened by decav. and o 2 ntinuous background spectrum. The decay-broadened
“lines’ are treated as signal. wiiereas «he continuous spectrum is constdered to be noise. This
sets tree osallation data analvas apart from muny tanuliar problems in seismic spectral
estimation. e.g. tinding the frequency content of body waves, or carthquuakes in the near
field. The spectra in those cases are predonunanily continuous. There are methods of multi-
taper spectrum anatvsiy that are usetul Yor spectra which do not have harmonic line com-
ponents {e.g. Thompson 1952 Purk. Lindberg & Vernon. in press: Lindberg. Vernon & Park.
unpublished manuscript).

The most straighttorward method ot detecting line components in low-frequency data is
to measure obvious spectral peaks in o discrete Fourier transtorm ot the data. [t one tapers
the time series in a prudent tushion. as indicated in Dahlen (1982). this approach is adequate
tor well-excited oscillations generated by large earthquakes (M; 2 7). Untortunately. most of
these well-excited osallations are surfuce-wave-equivalent tundamental modes which by
themselves allow poor depth resolution. The modes most usetul tor enhancing the resolution
at depth (e g. the overtone oscillations that correspond to PKP, PRKIKP, SKS etc. motion) are
excited only by very lurge or verv deep earthquake sources. kven then. their spectral peaks
may not protrude substantially above the hackground noise. Masters & Gilbert (1981) show
a typical example of this problem in the presumed identitication of two inner-core oscilla-
tions. The use of spherical harmonic stacking of records from a global array (Gilbert &
Backus 19632 Gilbert & Dziewonski 19730 Bulund. Berger & Gilbert 1979 can aid mode
identitication greatly. especially in the case of closely spaced spectral lines caused by
splitting of a free oscillation mto individual singlets. However. it is difficult to identify
decaying sinusoids in a low signal-to-noise environment using conventional methods of
spectral estimation.

In the following we propose a method that is designed to yield a quantitative measure off
the certainty that there is o decaving sinusoid at any given frequency. The novelty of our
algorithm resides in the additional information obtained by sampling the data with more
than one taper and the introduction of a statistical theory based on an Ftest to detect
harmonic spectral components and reject continuous. random-phase noise.
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3.1 REGRESSION ANALYSIS

Suppose that x (1) is a record consisting of noise and a number of decaying sinusords. one of
which has frequency . Then one can write

X{z)=uexpliwt  ar) te(r) (31

where g 1s a complex amplitude. a is a decay rate.and ez isanerror term The error 1erm
consists of other decaying sinusoids and noise. For a sutticiently small vidue ot €, x (1)
contains only the single decaying sinusoid gexp tiwt af) m the tfrequency nterval
(w  §2. w+ Q). This decaying sinusoid represents a deterministic signal in the record x (1),
and one can use the method of least squares to extimate 1ts amphtude .

We assume in the following that there is not more than one decaying sinusoid i the
trequency mterval (w - Q.+ 82). This is often not true I practice. but 1 many applica-
tions the various singlets ot free oscillation multiplets are observed to combine nto 4 signal
that is well approximated by a single resonance. Abo. the leastsquares procedure can be
generalized to the case of two or more decaving sinusoids in u trequency imterval of width
282 (Thomson 1982).

As we have indicated. it is important to taper the data. Using the optumal tapers of
Section 2. we multiply the data by each taper bwa Byl k=012 K 1.
turn, We pick only a small number (K) of data tapers because higher order tapers huve
successively poorer leakage resistance. In the case = 0 the tapersup to ornder A=V - Q'
have good spectral leakage resistance: higher-order tapers exhibit vastly poorer pertonmnance
(Slepian 1978). Thisisevident from the behaviour of the eigenvalues A appeaning in Tible 1
In the case » #0. we choose the A noise-cognizant tapers with the largest bandwidth
retention fuctors. Usually K < V7 in this case We shiow how we choose A in Secthion 4.

Multiplying the data {x (Y325 by the A cigentapers It Boen s ! one obtams &

tune series:
(Wil Bovix (. olik=0.1. A 1.

From equation (3.1)

e(nwinfoy)=xione (o) oy expliwt  ar 1 N D
(32)

Take the discrete Fourier transtorm of both sides ot (3.2)
ex (W) =1 (w) yﬁ’,‘(w w:B.rv). (3.3)
where

N
erlw)= Y elhw (11 v)expl fwr)

=0

AN
ylw)= Y xiw(rnfoviexpt dwn)

r-o

and Wy (w: B. v) s defined m equation (2.22). Because of the Jeakage resistance of the tapers.
the e, tw) are approximately the complex eigenspectra ot the noise in(w  §. w + 82y

We would like to make an estimate g of the amplitude g of o decaving siusoid of tre
quenvy w. To do this. a leastsquares procedure 1s performed. At each frequency w. the
complex eigenspectra yptw). k=0, 1, . K 1. are tuken to he the dependent variables.
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@ is the parameter to be estimated. and the Welw - wif.v). k=0.1....K 1. are the
mndependent variables. By the Gauss -Markov theorem. to produce a minimum variance
estimate of u that is unbiased at the decaying sinusoid’s true trequency using least squares.
the random variables vy (a8 must be statistically uncorrelated (Bickel & Doksum 1977,
ch. 7. Luenberger 1969, ch. 4: Tukey 1975). However. the yy(w) are not necessarily
uncorrelated random variables:

Cov [y (wh v tw)] = O (w)y,’:'(w)) O (WD e (o™

N-d
= g% E wi (7.8 vhwe (8 Bop). (3.4)
1=0
The sum
N1
Hy = Y witnpovywe i fov)
=0

will not vanish unless =v=0and k # k' For § = v = 0. Hy, = 6, . Elements of the matrix
Htor 3=0.6. QN =8n.and »=0.01 and v = 0.1 are shown in Table 4.

Since H is symmetric and positive definite. it has a Cholesky decomposition. That is,
there exists a lower triangular matrix G with positive diagonal entries such that

H=GG" (3.

v
vl

where the superscript T denotes matrix transpose {Golub & VanLoan 1983).
Transtorm the complex eigenspectra 1y (w) and the independent variables Wy (w: 6. v)
using the matrix G™' as follows:

Ve (8B 9) = (G (1 B v)
2 () =G e V(o)
I',\.‘<w,-:ﬁ,w=(G")k'ka(w,:B.v)

g (W) = (G e tw). (3.0

Table 4. Llements of matrix Hior 3= 0.6. QN = 8rund v = 0.01.

k 0 1 2 3 4
) 1.84870 0.18322  -0.21788 0.23523  -.22668

1 08322 286999 035164 -0.41450  0.44470
2 -021788 035164 434203 0.61999 -0.71893
3023523 -041490 061999 644037 104331
4 022668 044470 -0.71893  1.04331 936201
forf=0.6, QN =&, andv = 0.1
_——— —_ e e~ — [— kl, . ——— -
k 0 1 2 3 4

0 1.37223 0.12714 0.13583  -0.12606  -0.09953
t 0.12714 190834  -0.22102 0.23223 0.21434
2 0.13583  -0.22102 2.56776 0.33639 0.34401
3 -0.12606 0.23223 0.33639 333664 -0.46931
4 0.09953 021434 0.34401 0.46931 4.17692
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where vy (218, v), 2, (w)). Vielw;t Bov) and gy (wy) are the transtormed tapers. the trans-
tormed complex eigenspectra, the transformed independent variables. and the transformed
errors respectively. We employ the Einstein summation convention in (3.6) and hereafter.
summing repeated indices over the runge 0. 1, ... A 1. From (3.3).

Exlw)=(w) - pVlw - wif. v) (3.7)
The transtormed complex eigenspectra =, (w) are uncorrelated. as
Cov [z (w). 2 (W) =g (W) zf (W) Gl & (w)®

= (G gy Cov [ 30 3 (G e

%3

= 0k b (3.8)

rd

by (3.4)and (3.5).
A measure of the error in assuming that the record x(7) consists of a single decaying
sinusoid of frequency «w is
K -1 K -1
M@= § gl = 3 15w whw @) l® (39)
k=0 k=0

Perform a least squares procedure: solve

2= (3.10)
tor 1. Then (3.10) becomes
K -1
0= ¥ Viiw-wifv) [z w - ublw @B (3.11)
k=0

Note that g is actually a function of the tfrequency w:

K -1
2 Vitw - @Bz
k=0
pEpla)=— e —— — (312
K -1
S 1 Vlw - @B i
k=0

One can determine 2 (w) at a set of discrete frequencies wy:j=0. 1.2, ....J - 1. called
bin frequencies. by applying an FFT to the tapered data. The data can be padded with
zeroes to interpolate the spectrum. (Note that this ‘interpolation’ adds no extra information.)
To estimate the amplitude g of the proposed signal at each discrete bin trequency. set
wTw=wij=0.1....J -1 in (3.12). Then

K -1
> VE(0:B,v) 2 (w))
k=0
i) = . (3.13)
K -1
S %081

k=0
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Substituting for zx(w) in (3.13), it is seen that this ‘pointwise regression’ formula for g is
equivalent to a Fourier transform of the time series {x(t)}’,\;ol with a hybrid taper

{(W( e B.v)) Mp! given by the formula

K -1

S V(08w uplr:B.v)

W(t:ﬁ.v)="*0 i . r=0.1. N -1 Gia)
K -1

S V(0:8.9)1*

k-0

(VF10: B.v) = Vi (0:B.v) since {wi(r:B.0)) 755" is a real-valued sequence.) Note that
{w(r:B. v)}',\-fol is not optimal in the sense ot (2.19).
In terms of the complex eigenspectra and taper frequency transforms:
K 1K -1
SOS WO B ) H atew))
A m=0 [=0 Ay
Hlwj) = - ———— —_— = (3.15)
A LK 1 -
DD Wi t0: 3. v) (H ™Y, W (0 B.v)
=0 [-0

When §=¢=0.H=1and (3.15) reduces to equation (13.3) of Thomson (1982

It v=0 tie. tapers designed without provision for stationary background noise) or =0
(tapers designed for non-decaving signals). Wy (01 v, 0) = W, (0:0.8) = 0 for odd k. since in
both cases the W,‘ reduce to the transtorms ot discrete prolate spheroidal sequences. In these
instances the pointwise regression technique ignores the odd order tapers completely in
constructing y.

By (3.8},
Kk -1
O RYYTE vV |2k (e3)]
A0
Var |ulw,)|‘f S
K -1
( N }l'kl();ﬁ.u)lz)
k-0
gy
= N o (3.16)
K- VK. 1 _ -
SN Wh 008 vhH Y, W08 0)
m=0 [=0

The variance of the estimated amplitude increases with increasing noise amplitude.

If there is no decaying sinusoid at Irequency ;. vne would expect g to be small. How-
ever, this is not the best critenion for deciding if there is 4 decaying sinusoid at frequency w;.
The sinusoid may be present. but it may have a very small amplitude. Also. the least squares
procedure may yield a large value for g at some frequency. but a decaying sinusoid may not
be 4 good way to characterize the data at that frequency.. A method of evaluating the fit of
our decaying sinusoid model to the data is needed.

3.2 TESTING THE FIT OF THE MODEL TO THE DATA

A common technique tor assessing the fit of a least-squares estimate is to perform a statistical
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F-test (e.g. Wonnucott & Wonnacott 1981). An F-statistic is roughly the ratio
. variance explained by the model

— s (3.17)
unexplained variance

The random variable £ follows the F-distribution. which has been tabulated (e.g. Abramowitz
& Stegun 1963). We use the F-test to compare the fit of the data to a decaying sinusoid
model.

Suppose that the record x (1) consists solely of zero-mean stationary Gaussian white noise
n{r). For free oscillation data. we have found that it is a reasonable approximation to say
the background noise is Gaussian white noise and almost stationary. This can be demon-
strated by generating ordered value plots of the data. as in Fig. 10 [Wilk & Gnanadesiken
(1968) contains details on ordered value, or P — P plotting of data].

As betore. one estimates the complex amplitude p of a decaying sinusoid of frequency w
by titting the model @ Wy (w  &: B.v) to the random variables

N-d
Jaledr= N wn govrexp(—iwnn e k=0,1....K 1. (3.1%)
t=0
There is a finite probability that a decaying sinusoid model will fit the complex eigenspectra
of the noise (2.18) at some frequency. The chance that this will happen is a measure of the
contidence that i true decaving sinusoid exists at that frequency.

When no harmonie signal is present. the expected value of ea.t. transtormed complex

eigenspectrum vanishes:

Crle ) = 0. (3.19)

However, the presence ot noise. or signal. may cause any given transformed complex eigen-
spectrum 5 {w;) to he non-zero at some frequencies. This departure of 2y (cw;) from its
expected value may be partly “explained’ by the linear regression analysis. Using the estimated
value g (w;) from (3.13). the estimated value of i (wy;) is

fk(wj)=;}(w,-)l',\101ﬁwi, (3.20)

The deviation of zi(w;) from {z (w; ) may be decomposed into an “explained” deviation.
{2 (wj) (otey D] and an tunexplained” deviation. [z {w;)  Zx(w;)]:

2 lwd Gt = [2ete)) CrtaD] + [z lw;) Slw))] t3.2h
Or. summing over A, and noting that (:,\.(w,)) =()

K -1 K -1 K 1

k=0 k=0 k=0

The sume equality holds when one takes the modulus squared of the deviations:

K 1 K 1 . K 1
2‘ Izk(wv,-)(2= z ’:,\(w,bl‘* ‘\_: (:k(w,t jk(w,-iiz (.2.:3)
k-0 kL 0 k-0

by multiplying (3.21) by its complex conjugate. and then summing over k. Substituting tor
I (w)). (3.23) becomes
K-1 K 1 K 1

Dolndwh =gl P Y V0B P+ Y ntw) glwp) B0 gon) | (3.24)
k=0 k=0 k=0
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or
defining
K -1
Elw)= Tzl
k=0
K- 1
B Zlatwplt 3 1 Vet0:gon)
k=0
K -1
VW) = S Inlwy) - alwy) Vi (008, w12
k=0

where £ (w;) is the total sample variance of the z; (w;). 8 (o)) is the sample variance explained
by the decaying sinusoid hypothesis. and v (w;) is the residual. or unexplained sample
variance.

We formuldte a test to reject the nuil hypothesis that 4 = 0. Consider the random varisble
F formed by taking the ratio of the explained sample variance to the unexplained sample
variance. Then

~ 6(&),')
F(Q)}) =

'

v lwy)

K -1
Litwp i Y V080 1P
= =l (3.26)

K -1
S Jatw) ) V(0B
=0

If there is a decaying sinusoid at frequency wy. the denominator ¥ (w;) will be small. and
thus the function F{wy) will be large. By chance. sometimes a decaying sinusoid model will
fit the time series {n(r)} 7" reasonably well at some frequency. The probability of this
happening can be calculated. Theretore. one can describe quantitatively the confidence that
there is 4 true signal at a given frequency.

We need to know how the random variable f(w,) is related to the F-distribution. In
Lindberg {1986} it is shown that '

(K Hw)

Flwp =1k - DFiw)=— (3.27)

Q(Ca),')

follows an F-distribution with 2 and (2K 2) degrees of treedom. Therefore, the chance
that the random variable

K-1K -1

K- DIl S S Whi0:B.v)(H ™), W (0:8.0)
=0 (=0
TN R —— i —— e (A
K-1K-1
SO mwp) 8dw)) W OB ) (H )y [etewy) @) W0 8.0
m=0 =0




Multiple-caper spectral analysis: 1 777

Figure 10. Ordered value. or £ P plot ot 675 independent values of the ratio £ ¢w;) in (3.28) using
svrthetic stationary Gaussian white noise as input data, The cumulative probability distribution of the
ordered observations F(1) < I-‘(:)Q; T F(,,,) is plotted on the ordinant against sample quantiles on the
abscissa. The jth pomnt s plotted as the ordered pair [ 675). Fj)]. The graph 15 almost u straight line.
demonstrating that the ratio Frwpp follows an F-distribution for Gaussian white noise input data.

takes on a particular value at some frequency due to random noise can be tound using
standard tables of the F-distribution (e.g. Abrumowitz & Stegun 1965).

Figure 10 is an ordered value.or P P plot (Wilk & Gnanadesikan 1968) of 675 indepen-
dent values of the random variable F{w;) generated from a synthetic record of Gaussian
white noise. It the sample tollowed an F-distribution exactly. the ordered value plot would
lie on a straight line connecting the points (0. 0) and (1. 1). The departure of the ordered
value plot trom a straight diagonal line is not significant at the 93 per cent confidence level.
using a Kolmogorov  Smirnov test tor goodness of fit (Bickel & Doksum 1977). This demon-
strates graphically that the ratio Fw;) follows an F-distribution: when the data consist of
Gaussian white noise.

4 Data examples

We illustrate the multiple-taper algorithm with two examples of decaying oscillations immersed
in white noise. In the first. we analyse a synthetic [DA record in which the signal-to-noise
power ratio is known g priort. {n the second. we study a 340-hr record ot the 1977 Sumbawa
event from IDA station NNA (Nafla. Peru). Spectral estimates made by taking the DFT of
cosine-tapered data are compared to results produced by the multiple taper technique. We
tind the multiple-eigentaper algorithm is superior for detecting low-amplitude decaying
sinusoids in noise,

We have focused our attention on the gravest observed seis™ic free oscillation. the
spheroidal multiplet 4S». (15, has lower trequency. but this oscillation of the inner core has
not yet been convlusively observed.) The multiplet oS, consists of five decaying sinusoids
at distinct frequencies. These ‘singlets’ are labelled by an azimuthal order number
me{ 2. 1.0, 1.2} The five singlet frequencies of this oscillation are widely split by the
rotation of the Earth. so much so that the magnitude of the quadratic second-order Coriolis
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splitting is roughly 60 per cent that of the quadratic splitting caused by the karth’s hydro-
static ellipticity (Dahlen & Sailor 1979). The singlet frequencies have been measured by
Buland er al. (1979) from spherical harmonic stacks of six 150-hr 1IDA records o1 the 1977
Sumbawa event. The muitiplet (S, is difficult to measure as it is excited by only the very
largest earthquakes. Even for the Sumbawa event. the signal-to-noise ratio is not large. Also.
some singlets have very small amplitudes at some stations because of the dependence of
singlet amplitude on latitude. As a result. no more than two or three of the five singlet
resonance functions can be seen in any of the conventional amplitude spectra of records
from the seven IDA stations existing at that time.

We constructed a 300-hr synthetic IDA record from CMO (College. Alaska) using a source
tocated in Qaxaca, Mexico. The five singlets ot ¢S, split by rotation and ellipticity. were
included in the seismogram (see Park & Gilbert (1986) for an outline of the computation
procedure). Gaussian white noise was added to the record with amphiude scaled so that
NulPig% =73 for the m =0 singlet oscillation, ¥{p|* 04 = 22.5 for the m =2 1 singlets.
and Viul? 6% = 3.0 for the m =1 2 singlets. The record was sampled at 160 intervals to
produce a time series of 6750 points. We analysed the record with five eigentapers with
QN=87.8=0.06.»=0.01l to produce amplitude estimates g{w) and an F-test of the tit of
g{w) to the complex eigenspectra. Five tapers were chosen because the tive lowest order
eigentapers with QN = 8n. §= 0.6 and v = 0.01 have tractional leakage ot 0.01 or less (Table
2). We also produced a spectral estimate using a cosine taper tor comparison. According to
arguments outlined in the appendix. (F) should be near the 99 per cent confidence level for
the m==*1 lines and considerably greater for the m =0 line. The m =+ 2 lines have
(FY=2.25.but large random tluctuations in F are possible.

The spectral estimate using 4 cosine taper { Vo(w ! 1s compared with the multitaper ampli-
tude estimate | u(w) )i Fig. 11. We graph the trequency band 250 < f'< 340 uHz conuining

the five singlets of (S, and no other known sersmic tree oscillation. The ordinudte scales of

the plots do not match because v .(w) is an estimated amplitude spectrum and gw) is the
amplitude of u presumed harmonic signal at + = 0. Muny teatures -t the plots are similar.
however, because both represent discrete Fourter transtorms of tapered data [fgtw) corres-
ponds 10 the DFT of the data times & hvbnd taper as shown in (3.13) (314 Them= 2.
0 and | singlets. having frequencies given in Table S, are readily discernible. The prominence
ot the m= 2 singlet is puzzling in light of its fow input-amplitude. The »m = - 1 singlet
appedars to be ohscured somewhuat by noune interterence.

The F-test of the fit of g(w) to the complex eigenspectra iy graphed in Fig. 120 All five
singlets of S, are observable with better than 935 per cent detection confidence. Their
measured trequencies are given in Table 3. along with estimates of the expected errors in the

Table 5. ['requencies of | S, in synthetic record

B ___Singlet Azimuthal Order m -
Input Singlets -2 -1 0 1 2
Input Frequency (mHz) 299800 304615 309337 313874 318226
Input Phase -85° -133° -2.7° 126° 72°
F -Test Results .
Frequency (mHz) .29973 30436 309356 31371 31889
Frequency Uncertainty 00022 00034 000074  .00018 .00035
Phase -74° -118° -1.5° 148° 87°
F -value 5.5 13.7 86.0 66.6 5.9
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Figure 11. 100 Amplitude of 4 spectral estimate using a cosine taper §ye (w) ) tor a synthetic record of S,
thy The function | gtw) ], where gtw) is the estimated comples amplitude of o decaying sinusoid in 4
synthetic record of 8. using five eigentapers with parameters @V = 8a, 3= 0.6 and = 0.01. In both (1)
and by, three ot the five singlets of |8 are visible. The true positions of the input singlets are marked

frequencies produced by the method described in the appendix. The most poorly fit
frequency observation ts within 2o of the true value. Note the rough equivalence of the Fiest
values for the m =+ singlet lines. The amplitude of the m= 2 singlet in Fig. 11 is
enhanced by noise tluctuations, but the noise contribuuon has incoherent phase. causing the
m = 2 F-test value to tall relative to that of neighbouring oscillation peaks. On the other

hand. an apparent noise-minimum at the trequency of m =+ 2 sngle-hine allows its small
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F—test of fit of Estimated

Amplitude to Eigenspectra

F-test Value
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Figure 12. F-test values resulting trom a test of the it of estimated amplitude & (w) to the eigenspectra
obtained using five cigentapers with parameters 2.V = 8n. 6= 0.6, and v = 0.01. The data 1s a synthetic
record of LS Uit consists of five decay ing sinusoids whose frequencies are listed in Table 3. AN five have
peaks above the 95 per cent confidence level The funcuon fhcw)rt is ploited in Fig. 1ib. The value
EF = 311 corresponds to the 90 per cent contidence level, F= 446 iy the 95 per cent contidence level. and
F = 865 v the 99 per cent level, The true positions of the input sinzlets are marked.

amplitude to be detectable m the plot of the Fiest. Note also that the F-test has peaks at
frequency values not associated with S, singlets. These are caused by random statistical
tluctuations. The frequency band shown contains 63 independent frequency samples. There-
fore. one would expect that due to randomness. roughly three values of the F-test in
Fig. 12 would protrude above F'~ 4.5 the 95 per cent contidence level tor the F-distribution.

We also took 340hr of vertical IDA gravimeter data from station NNA. starting 8.3 hr
after the onset of the Sumbawa event. This record is relatively complete. with only two data
gaps of roughly 2.3 hr each a1 95 and 275 hr into the record. Time series points talling in the
gaps were assigned the vilue zero. The data were sampled at 20s intervals. We low-pass
tiltered and decimated the record so that it contained 7668 points taken at 160 s intervals,
Atftershocks that did not visibly atfect the instrument in a non-linear manner were retained,
as their etfect on the spectrum in the vicinity of (S, is small. Sections exhibiting non-linear
seismometer response contribute signiticant energy at low frequencies. and so these were
removed.

We had to know roughly the Qs of the singlets of ,S;to apply our procedure. The
Q > 560 value for S, given by the model of Masters & Gilbert (1983) corresponds to
B=0.68. Chao & Gilbert (1980) estimate that the m = 2 singlet of 483 hus a Q of 413 the
m =0 singlet has a @ of 609 and the m =2 singlet has a @ of 309. The @ measurement
reported by Hansen & Schnapp (1982) leads to a decay parameter of 3 = 0.84. We analysed
the record with a set of five eigentapers having parameters 2N = 87, = 0.01 and g = 0.63.

The function | atw)| obtained using the eigentapers is plotted in Fig. 13h, and the ampli-
tude of the spectral estimate using the cosine raper |y, (w)|is presented in Fig. 13a. Again.
we graph the frequency band 280 f< 340uHez. Spectra were calculated at frequencies
separated by 0.163 uHz using the DFT. Table 6 lists the frequency estimates of the five
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Figure 13. (&) Amplitude of 4 spectral estimate using a cosine taper tor 4 time series of the Sumbuwy
event recorded at IDA station NNAL We plot the tfrequencey band 280 < -0 340 p Hz contaming the five
LS snglets Onh two ot the singlets are observable, (h) Amplitude of the tuncton 4 Gw) tor a nme series
ot the Sumbawa event recorded at DA station NNAL We plot the frequency band 280 1< 340 u Hy
containing the tive (8, singlets, but agaim only two snglets are visible: The posttions ot the tive singlets as
determined by stackine are indicated

singlets ot 45; made by Buland er al. (1979): these frequencies are marked in Fig. 133 and b.
Only the m == 2 lines are clearly visible in Fig. 13a and b. Candidates for the other singlet
resonances are evident but do not protrude significantly above the apparent ambient noise
level.

Figure T4isagraph of the F-test of the fit of f(w) to the complex eigenspectra. There are
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Figure 14, f-test tor the estimated amphtude 4 tw) plotted in Bigs 134 The tme series being analysed is o
revord of Sumbawg event from DA station NNALD We plot the frequency band 280 < <330 u ]l
contgimng the tive S, singlets., Four of the singlets have F-test peaks corresponding to greater than 93 per
cent contidence of detection. The positions ot the five singleis as detenmined by stacking are indicated

four peaks above the 93 per cent detection confidence level in Fig. 14 which correspond to
singlets of (S.. The m = | singlet appears to be contaminated by noise. resulting in a low,
asymmetric vanance-ratio peak. The estimated frequencies of all five lines. and their asso-
clated uncertainties. are histed in Table 0. The discrepancy between the m = | trequency
estimate and that of Buland ¢r @/, (19791 1y another indicator of the noise contamination of
the mr =--1 singlet. The other peaks in Fig. 14 above the Y3 per cent confidence level are most
likely due to rundom fluctuations,

In the above examples. we Knew (approximately) the frequencies of the decaying oscilla-
tions and that they had lurge enough amphtude to be detectable. To be usetul. the multi-
taper detection algorithm for decaving sinusoids should yield comparable results when either
or both of the above conditions are not satistied. Given the known frequencies of the gravest
seismic oscillations, one could use the algorithm to search for so-called “silent” events (e.g.
Kanamort & Cipar 1974y whose existence s still controversial. In the more conservative
enterpnise of expanding and refiming the tree-oscillatton data ser in order 1o constrain deep
Earth structure more reliably. the ewgentaper algorithm otfers hope ot retrieving more

Table 6. Frequencies of 8 1m0 NNA record of Sumbawa eveny

Singlet Azimuthal Order m

F -Test Results 2 1 0 1 2
Frequency (mHy) 29988 30526 0918 31423 31830
Frequency Uncentainty .00027 00060 00041 00016 00013
Phase -134° 4R 43 142° 10°
F-Value 1.7 42 5.0 0.0 208
From Buland 7 al. (1979)

Frequency (mHz) 300010 34799 309490 314000 118499
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marginally observable modes than are asccessible using single-taper algorithms. Care must be
exercised that peaks in the Fotest due 1o random noise are not misidentitied as seismic free-
oscillations. To this end. quantitative comparison of more than one seismic record is
essentiul. This has been done by combining the stundard techniques of stacking and stripping
ot low -trequency seismic records (Gilbert & Dziewonski 19751 with the mulutapey slgorithm.
This 1s discussed in Part I of this paper.

S Summary

We have described 4 vanational procedure for determining tapers that opumally resist
spectral leakage tfrom outside o frequency region of bandwidth 2€2 for exponentially decuy-
g sinusords contaminated by white noise. Multiplying the data by these tapers creates a
number of tme series. A decaying sinusoid model is titied to the discrete Fourter tanstorms
of the tapered data series at each frequency of interest (equation 3.135). The tit of this model
to the data iy tested at each trequency using a statistical Fetest fequation 3251 This gives a
quantitative measure of the chance that there 15 a decaving sinwsord at any given frzquency
m the duta. We have shown that this procedure is a sensitive detecton ot decayimg harmonic
lines in tree osallation data.

In Part 11 or this paper. we shall present a number of extensions tothe muluple-taper
method ot farmonic analysis. We shall expluin how the technique lus been moditied to
estimate the harmonic components of records containing gaps. We discuss how simusoids at
trequencies between the discrete FFT bin trequencies can be detected. and how this method
can be combined with conventonal multi-station stacking procedutes. The resolution ot
closely spaced harmonic lines is treated. Subsequently, we plan to mtroduce algonthins tor
finding the decay rates of free oscillations. as well as their frequencies.
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Appendix: error estimation

The methods of Section 3 can be used to obtain estimates of the complex amphtude and the
frequency of a decaying sinusoid in a time series. Random noise van cause the estimated
amplitude and estimated frequency to deviate trom the true values. This appendix outhines
methods tor calculating the expected size ot these devimions,

Al Estimated amplitude

First, consider the estimated amplitude gtw). 1ty o statistical estimator of the true amph-
tude p. The utility of g s an estumator can be gauged by 1ts bias {ud g and its mean square
error {3 u|®. Let the daty x (1} be zero mean white nowse n (£} plus o decay g sinusond
with frequency . Then

x{ny =)+ pexp iwyt ol r=0.1.....N | tALD)

where g is the true complex amplitude. « iy the true decay rate. and (ninyn* ("N =016, .
We also assume that (n(H)n(r)) =0, [This is justified as only the real part of the nes) 1
actually measured, leaving us tree to define its imaginary part. Miller (1974, p. 41) gives
further details.] The Ath transformed complex eigenspectrum ot the data 1s

Zelw) = (G v (w)

=gl tulilw  wrifov). (A2
where
N -1
& (W)= (G Ty N expl iwnwtrg v)nir)
=0

and G, y;(w) and Vy are as detined in Section 3. 1t follows that

ptw = uVlw - wyiB.v) (A3}
anda
Glan S twn = ok il liw  wrd ) Viw wpibv) (AS)

The expected value of g, combining (3. 13y and (A.3) is

Ko
u S VEOB ) Vitw  wpiBy)
k-0
o)) = _— I (A.6)
K1
S V00 2
Ko
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When w=wr. Wlwp) = 50 [ is unbiased at the true frequency wy. At other fre-
quencies { is a biased estimator of u.

The mean square error of g is constant at all frequencies, and using (A.6). is

o
da uld= . (A.7)
fo)
where
K 1
p= X 108
K-0

A2 Frequency estimates

Now consider the estimation of the true frequency wy. The true frequency can be estimated
from (1) the frequencies of peaks in the modulus of the estimated amplitude 1212 (2)
minima in the unexplained sunple variance Y (w;) introduced in (3.25). or (3) peaks in the
random variable F(w;) =(K  1)8(w;) y (). These all provide approximately unbiased
estimates of the true trequency wr. and their mean square errors can be computed. as
shown helow.

A2l FREQUENCIES ESTIMATED FROM PEAKS IN I;I[2

The function | g (w) |? achieves a peak at frequency wy . where

LI, |
Ozel(u)g):(;j-—“l(w)lz ; )p. (A8)
(7%}

iw = we
In a neighbourhood of the true trequency wy
0=0"(wy) =0 (wy) +lwy w8 (wy) (A9)
Taking expectation values of both sides. and assuming that (ws wr) and 6 (wT) are

uncorrelated:

((4)9 (.«)T)t S m— (A.10)

Detine the matrix MY with elements
Yi=im Y- mI=0.1.2....N 1. (A.11)

where j is an integer. and the vector v with elements

K -1
> VE(O:B. vy (r:B.v)
k-0

ol = exp( ar) r=0.1.2....N L (A.12)
P

Then some algebra shows that
0 (wrn= ilulPpv-MD-v=0 (A13)
as MM is anuisymmetric. and

B (wph= plulv-M?P .y (A.14)
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Theretore. trom (A.10). {wy wq) =0 and wy is an unbiased estimator of wy. To find the
mean square error ot wy. square both sides of (A.9) and take expected values:

L 8 (w1
(wp - wT)‘)m—[”—T—]—,. (A.15)
<[0 (“)T)l")

Using the relation

)X () x (1)x* (1) = Jult expliwp(ty— 13+ 13- )] exp | alty+ 12+ 13+ 14)]
T o P8, . exp liwy (- 1) alrs+ 1)
T8¢, exp liwg (ty - 1) ~ o, +15)]
810, exp liw{rs— 12) - alrs+ 1))

+8; ¢, eXp [l ()~ 13) — @ity ¥ iai

+ N (14128, W8y, 8¢, + 81,1, 81,1) (A.16)
one tinds that
(0" twp) P =p fok s-MP s+ 20k {ui¥s -1} (A1T)
and
(8" (w)=p {oh s M@ s+ 20 [ Ps r+ il (v - MP - ¥)?) (A.18)
where s as components
s, = [0(r) exp tan)f™: t=0.1.... N1 (A1)
and r has components
re= (M- 9), 1% r=0.1....N~1. (A.20)

For sufficiently large initial signal-to-noise ratios. N | u|*/o4 > 1. and

< 2 20%  s-r (A1)
(wy — wWr))=—30 . -
lul?v-M® .y
The mean-square error of the estimator wy decreases as the signal-to-noise ratio increases.
Figure Al is a plot of the estimated rms mistit of wy. defined by

{wp - WTlms = VUwg - w{fi')

as a function of initial signal-to-noise ratio for tapers with parameters §=0.6. 1.05 and
»=0,0.01. 0.1. ] using (A.15). The misfit is plotted on the ordinate as a fraction of the
Rayleigh frequency wy = 2n/T. where T = NAt. The parameter N|u|*/o} is plotted on the
abscissa. One expects frequency uncertainty to increase rapidly with decreasing signal-to-
noise ratio. but for N {u(*/gk < 10. the estimated trequency uncertainty in Fig. Al is essen-
tially constant. This is because relation (A.15) ceases to be a good approximation at low
signal-to-noise ratios. where the first-order expansion (A.9) fails to hold. and (wp — w) and
6" (w1 ) are correlated. The solid curve corresponds to v = O: larger values of v correspond to
succeedingly finer dashed curves. The rms misfit (wy - Wy tends to decrease with
decreasing values of v (except for §=1.05 and N | u|*/a% > 80).
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Figure A1 ta by Fatimated rms mistit of estimated fiequency wy 1o true frequency wp as o tunction ot

Noutd! a"\» tor tupers with N = 87 3= 0.6, 1.05 and v = 0. 0,01 0.1 and 1. The curves are meaningless
for Viu ol <10 because tA1S) tuils to be a good approximation. Uncertamty decreases with decreas-
ing values of noise purameter v (except tor 3= 1.05 and Vip ) u"\‘ >80y Uncertanty decreases with

increasing signal-to-noise rativ.

A2 FREQUENCIES ESTIMATED FROM MINIMA IN y(w)
Another estimator of the true frequency wry is w, . the frequency of a minimum in the
unexplained sample variance defined by

W(w,‘. )=0

The frequency w,, is also an unbiased estimator of wr. as
W (wT)) -0

e (A.22
Wwr )

(w\", (‘)'1')‘a
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The result (A.22) ¢an be obtained using (3.25) and (A.13):

, K -1 d
(w (an =(E'((¢JT)>= }_: <(LT|.',\((4))|2) >

k=0 w W= W

K-1N-1N¥-1 , ,
it > S Y - O udexp [ atr+1]=0. {A.23)
k=0 1=0 r'=0

Also,
Wlwp =~ ulPrM?P.ry. o, (A24)

where the matrix I'Y? has components

. K 1 .
S N T BN AT I RS LR I Le=01. N ] (A.25)

', " "
rt — K “R

k=0

and ¢r denotes the trace operation on matrices. Define also the matrix Pl with com-
ponents

l"”“"'I = I‘(,,“exp( -uhexp( wr'y Lr=0100 N -1 (A.20)
Then the meun square error of estimator w,, can be approximated as

RS (VR ER S B
oo, wrrm:[—”—nf‘ {A27)
(l\,’/ ((.:.)1")]')

where
’ 5 4 A ! 3
Ay twpr =0t v M@ -1+ 200yt X (Mt ploaty e {A2%)
=9
and
" 2 3 \ Vl A
Q" pr =0 t M@ -3 + 263 julP S (MWDl Byt e (MET - pleee )2
10
(A.29)
For NViuf? a3 » 1
A
2N MU ploedy 2
« P (0‘) <o A30
w,  wylds . e (A.30)
lul? [trM@pleal))?

As signal-to-noise ratio increases. (w,  wp ) decomes smaller. Graphs of (W, W1dems =

{(w, w)? have the same shape as the plots of wy wikms th Fig. Al but
(w, wplms 15 10 I3 per cent larger than {wy Wyl tor 4 given signal-to-noise ratio.
Forexample. it g=v = Qand V| ui* 6% = 10. (W — wpdems = 0130 WR. and (wy W1 drms
=0.165 WR -

A23 FREQUENCIES ESTIMATED FROM PEAKS IN F(w)

The true frequency wy can also be estimated from the frequencies wy of peaks in the F-test
curve defined by F'(wy) = 0. As befure. to first-order in (W ) assuming (wy  wy)
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and F"(wy) are uncorrelated:

(F"(wr)

(W Wy s o (A3D
(F"(wp )

By (3.27).

VHWIF (w) = (K DB (DY w) 8wy (w)]. (A.32)

Assume that % and F'. 0" and . and 0 and v are uncorrelated at w. Then. the expectation
value of the right hand side of (A.32) vanishes at w = wr. But.

N 2
WHwN = o?\-( s lUk({Zﬁ.sz) #0
=0
0 (R e =0 AR (e D« O oy is an unhiased estimator of wy by (A31).
The trequency wy can be expressed in terms of wy and w,, . Expanding 8 (wy) and
v (wy) in power series about their extrema to second-order in (wy - wg)and (wy  w, )
(K - [8(wa) + ¥ (wr - wg)8"(wy)]

F(wg)= W (A1)
ﬂ-‘\wg)*’l/:(wl:—u)u) v (wy)

and
0" (wg) (wp - w,)F(wy)
(Wr — Wp) et < i F (A.34)
¥ o(wy) K -1
trom (A.33). Substitute (A.33)in (A.34) and let
Clwy  we) (wy twy) (A.35)
U)} = (.t) - : - o + ‘4v:7'f
so that wy = w, when @ =1.and wy = wy when © = | Then & satisties
@ - J@thow (1+2- 2a)=0. (A.36)
where
:8(0)9'
a = _-——-74____2.77
(Wy - wp)b (wy)
N,
2y lwy)
R s
(Wy - W)y twy)
The two solutions of the quadratic equation (A.36) are
@.=(@+b)ta+b)P+2b+1 - a (A37T)

The solution &, is spurious because | ,| = 2 asq or b - - oo _and truncated Taylor series
expansions in (A.33) and (A.34} are invalid for large values ot @. The second solution w_ is
constrained so that | &_| < 1. and corresponds to wy lying hetween wg and w,, .

As wy 1s a weighted average of wy and wy . one might expect wy- to be a more accurate
estimator of the true frequency wry. This hope is dampened when one realizes that the
deviations of wg and w, from the true frequency wry are strongly positively correlated.
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The correlation between wy and w,, can be estimated as
Wiwp) 8 (wp )
ws wpllw, wih=s | ——f—-. (A.38)
(Wi ly) 0 (wph

where

W wp) 0w =p {oh tr (MB- 1))

AYEES|
rodful® N (MO vy, (MO pleely syexp(an} 1A.39)
10

and

—1)

w8 = o jel M T

+ 208 lul’ \L l(M“’-v’),(M‘”-l“"""»,,vmcxp( ar)
=0
+pl* v - MP -y M@ - pleely (A.40)
where M*/? has elements
M) = MY o(k) exp (ak)o () exp (al). k. 1=0.1.2....N 1

Using these equations one finds that the cross-correlation of wy and wy, i1s aimost unity.
For example. if =v=0and N|ul* 03 =10. wy - wrMw, wp)=0.922. Any averag-
ing of the two estimators wy and w_, will not result in an estimator which has significantly
less error associated with it

Using (A.34). one can see that for large values of F,wy ~ w,,. Therefore. we estimate the
errors in the frequencies of the F-test peaks using equation (A.27).

A3 Detection sensitivity

It is useful to know the sensitivity of the F-test to the presence of a decaying sinusoid of
frequency wq. The signal-to-noise ratio required for detection of a sinusoid at a given con-
fidence level can be calculated. Suppose that the time series is given by (A.1). with u either
purely real or purely imaginary. It can be shown that at frequency w1y the random variable
F detined in (3.28) follows a noncentral F-distribution with noncentrality parameter

MM
= - N 08P (A.41)
ON k0
{Kendail & Stuart 1979). The expected value of F{cwT) is
(2+yK
K ) (A4

tKendall & Stuart 1979 p, 279),

(I‘(o.)-[ »=

In Fig. A2, (F(wy ) is plotted as a function of signal-to-noise rativ for sets of five tapers
with parameters QN =8nr. f=0.6. 1.05S and v =0. 0.01. 0.1, and 1. For a given signal-to-
noise ratio. the expected value of the F-test grows with increasing v, reaching a maximum
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T otest expectation vs. nital signo. -to-noise power ratio

- P

sl

N N
\\ is W
.
11 C51 exXDOIN v t L2
=1
. =0.01
N
~0.°
A - =
: 947 confudence 0
v - ’

L;_" T

Figure A2 tu b1 Bxpected value of the F-test at the true frequency wy as a function of Vi) lo}. for
five tapers with 2.¥ = 8. g = 0.6 and 8= 1.05. und v = 0. 0.01. 0.1 and 1. Larger values of v are plotted

with increasingly shorter dashes. The 99 per cent confidence level for an F-distributed raundom variable
with 2 and 8 degrees of freedom (£ = 8.65) is shown. For a given initial signal-to-noise rativ. (&) increases
as voincreases. Theretore. 1t is easier to detect a decaying sinusoid using tapers designed with lurge values

of the noise parameter v,

when v = |. Suppose one wants to detect a decaying sinusoid at the 99 per cent confidence
level. To do this using tapers which have 8=0.6 and v = 0 requires a 25 per cent higher
signal-to-noise ratio than performing the analysis with tapers which have parameters § = 0.6
and v = 0.1. Using tapers with $=1.05 and v = 0. a 125 per cent larger value of |u|*/o} is
required than employing tapers designed with $=1.05 and v =0.1. There is a tradeoff
between detection capability (Fig. A2) and frequency uncertainty (Fig. A1), but tapers
designed with 0.01 < v < | provide reasonable performance in both areas.

For comparison. consider the spectral estimate obtained by taking the discrete Fourier
transtorm of a tume series which has been multiplied by a cosine taper. A cosine (aper
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we () is defined by

2nt
WC(NzA{! Cos (}V—;])] t=0.1.... N 1. {A.43)

where A is chosen so that

Nl
S [we() =1,
r-0
A direct estimate of the spectrum of the data x (1) is { v, (w)|%, where
N
Velw) = Nexp( fwhw x(r), (A.44)
0

The peak frequency w, defined by

W= we

od
— vt ?
dw

1s taken as the estimator of the true frequency wy of a sinusoidal signal in the data. As
betore, w is an unbiased estimator of wy. and it has mean-square error

o, wphs— - ——5-7- =1 (A.40)

Expressions for the expectations on the night-hand side of (A.46) are identical to (A.17) and
(A IS with woeryexpt af)replacingv (). and p = 1.

For data consistung only of Gaussian white noise. 2|y, (w) |2 0% is x* distributed with two
degrees of freedom. and there is a prohability of 0.01 that 2 |y (w) |3/ 73 will reach or exceed
921 (Abramowitz & Stegun 19631 It v (w)|? exceeds the value 9.21 o% ' at some
frequency. then one s more than 99 per cent contident that a signal exists at that frequency.
s easy to show that. tor the time series (A1),

5
2

Nt
(l};(w,ﬂzﬁlmz( Now i exp atl) + 0 (A47)
r o
so that
N1 2
Nlul® oy = }_m\'( N owlnexp at)) (A48)
10

is the value of the inal signal-tonoise power ratio associated with 99 per cent detection
contidence at trequency wr. '

Suppose one wants to detect a decaying sinusoid with decay parameter § = 0.6 (or decay
rate. a=0.6n/T) at the 99 per cent confidence level. Using the spectral estimate
{¥c(w)|® a value of V{u|? 6% of approximately 32 is required. whereas using an F-test and
five tapers for §=0.6.0=0.1. ¥ |u|* ok ~ 23.5 corresponds to detection at the 99 per cent
confidence leYel. It the decaying sinusoid has 4 decay parameter of = 1.05. an initial signal-
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to-noise ratio of N |ui?/0% ~ 104 is needed for 99 per cent contidence level detection using
the spectral estimate |y.(w){% but N|ul*/o% only needs to be 38 when the multitape
method is applied, using five tapers with §=1.05 and» = 0.1. In this case. the multitaper
approach is 274 per cent more efficient then the cosine-taper spectral method.

Clearly . the spectral estimate |y (w){® is a less sensitive detector of decaying sinusvids in
a time series than the multitaper method. Much of this discrepancy in detection ability is
due to the eigentaper’s preferential weighting of the start of the record where the signal-to-

noise ratio is greater. Also. more information is extracted from a given time-series by apply-

ing several tapers: the extra degrees of freedom aliow a better-constrained least-squares fit of
the decaying sinusoid model to the data. Another advantage of the multiple-taper technique
is that it allows one to discriminate between signals which are truly harmonic. and those
which have time varying phases enti imates employing single tapers do
not.

The variance of the random variable F(w7) can also be expressed in terms of the non-
centrality parameter y defined in (A.41):

(K 1P 4y + (K - D +o?

var [Flwy)] = —— o &

B (A49)
8(K 2K -3)

when the data are given by (A.1). and y is purely real or purely imaginary. The height of an
F-test peak is not very well determined: v/var [F(wT)] > Y3¢F (co1)) when K =5 for values
of Fabove the 90 per cent detection threshold.




SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 REPQORY NUMBER [2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
4 TITLE rand Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Multiple-Taper Spectral Analysis of Terrestrial
Free Oscillations: Part I

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORIs, 8. CONTRACT DR GRANT NUMBER(y)

Jeffrey Park, Craig R. Lindberg, and _qc .
David J. Thomson NO0014-85-C-0104

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

Scripps Institution of Oceanography
La Jolla, California 92093

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
. . — . April 1987
Uttice of Naval Research T NUMBER oF PAGES

Arlington, Virginia 22217

14 MONITORING AGENCY NAME & ADDRESS(!f different trom Controlling Office) 15. SECURITY CLASS. (of thie report)

unclassified

15a. DECL ASSIFICATION: DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

. DISTRIBUTION STATEMENT (of the abstract antered in Block 20, if different from Report)

3

8. SUPPLEMENTARY NOTES

Reprint from Geophysical Journal of the Royal Astronomical Society of London,
Vol, 91, 755-794, (1987)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20 ABSTRACT rContinue on reverse side If necessary and identity by block number)

Summary. We present a new method for estimating the frequencies of the Earth's
free oscillations. This method is an extension of the techniques of Thomson
(1682) for finding the harmonic components of a time series. Optimal tapers for
reducing the spectral leakage of decaying sinusoids immersed in white noise are
derived. Multiplying the data by the best x tapers creates X time series. A
decaying sinusoid model is fit to the X time series by a least squares procedure.
A statistical F-test is performed to test the fit of the decaying sinusoid model,
and thus determine the probability that there are coherent gscillations in . -

DD FO'"‘" 1473 EDITION OF 1 NOV 65 1S OBSOLETE X
' IAN S/N 0102 LF 014 6601 unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

_h._" P




JOURNAL OF GFOPHYSICAL RESFARCH. VOL 92 NO BI2. PAGFS 12,675 12,654 NOVEMBER 10, 19X~

Multitaper Spectral Analysis of High-Frequency Seismograms
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Spectral estimation procedures which employ several prolate spheroidal sequences as tapers have
been shown to vield better results than standard single-taper spectral analysts when used on a
varnety of engineering data. We apphy the adaptive multitaper spectral estimation method of Thom-
son (1982) 10 a number of high-resolution digital sersmic records and compare the results to those
obtained using standard single-taper spectral estimates  Single-taper smoothed-spectrum estimates
are piagued by a trade-off between the variance of the estimdte and the bias caused by spectral
leahage  Apphving ¢ taper 10 reduct Bius discands datag increasing the vanance of the estimate
Usmg a taper also unevenly sumples the record  Throwing out data from the ends of the record
can result i a spectral estimate which does not adequately represent the character of the spectrum
ol nonstationary processes like seismic waveforms. For example, g discrete Founer transform ot
an untapered record fie. using a boxcar taper) produces a reasonable spectrul estimate of the
large-amplitude portion of the seismic source spectrum but cannot be trusted to provide a good
estimate of the high-frequency roll-off A discrete Fourter transform of the record multiplied by
more severe taper (ke the Hunn taper) which is resistant to spectral leakage leads 10 a rehable esu-
mate of high-frequency spectral roll-off. but thiy estimate weights the analyzed data unegually
Therefore single-taper estimators which are less affected by leakage not only have increased var-
ance but also can misrepresent the spectra of nonstationary data. The adaptive mullitaper algo-
rithm automatically adjusts between these extremes. We demonstrate its advantages using 1é6-bit
seismie data recorded by instruments in the Anca Telemetered Seismic Network. We also present
an anahisis demonstrating the supeniornity of the multitaper algorithm in providing low-vanance
spectral estimates with good feahage resistance which Jo not overemphasize the central portion of

the record

1. INTRODUCTION

Spectral estimation s a powerful method of data
analysis  which is often used 1o study  geophysical
processes.  The estmuation of the spectra of background
noise, line components. and transient signals 15 central to
the analysis of electric. magnetic, and seismic time series.
There have been many techniques developed which are
effective for the analysis of long records of stationary
processes.  Unfortunately. these techniques are not
universally applicable to seismic data sets.  In many stu-
dies 1t is necessary to estimate a spectrum from a short
time series. This situation can occur if some of the data
are missing or if the data of interest (e.g.. a seismic phase)
are contained in a short segment of 4 longer record.

A new approach for esumating the spectra of short time
series, known as multitaper spectral analysis. has been
developed recently.  We huve applicd this technique.
which was first presented by Thomson [1982]. 1o several
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dozen seismograms. in this paper we analyze (wo
representative records. The spectra estimated using the
multitaper technique are compared with several direct
spectral estimates employing commonly used single 1apers.
We show that the multitaper approach can vield superior
results when applied to high-frequency seismic data.

Spectral analysis of specific phases within a seismogram.
particularly those at regional or local distances. can be
difficult. It is often impossible to isolate a particular
phase. If one isolates a major phase by discarding the rest
of the record and then makes a direct estimate of the
waveform’s spectrum without first tapering the data Ge..
using a boxcar taper). the high-frequency roll-off of the
estimated spectrum can be severely biased by spectrul
leakage. Therefore it is standard practice to muluply the
time series by a taper before performing a discrete Fourier
trunsform (DFT) to reduce spectral leakage (an extensive
review of tapering is provided by Harris 11978)).

The cosine or Hann taper is popular in seismic analvsis,
being both effective and easy to calculate. The uuhity of
the Hann taper is bought dearly, however. It one views
cach data point in 4 time series as a constraint on the
estimated frequency content of the record. the Hann taper
discards 5/8 of the statisiical information in a ginen ume
series.  This can be easily seen from the graph of the
Hann taper in Figure 1. The data points at the extremes
of the record are weighted weakly, while the center of the
time series is emphasized. This unequal weighting causes
the statistical variance of a direct spectral estimate using a

12.678




1287h Pagi BT Ab MUETITAPER SPECITRAL AN LYSIS

16

14}
12h L . 20%-cosine

ég:‘ ’ " boxcar j
06}

04 R [
02 J
00} - -

00 04 08

Fig 1 Comparnseon plot of boxedr. Hann, and 200 cosine tapers.

Hann tuper 1o be gredter than the vanance of g perniodo-
Eram spectral estimuale.

Diachiiaii- TURCy tupers wic dewziied to dircummivern s
loss ol mformatien somewhat by applyving the cosine
weghting 1o only the exiremes of the record.  For
instanve, the 2000 cosine taper (Figure 1) odiscards only
1235 of the available data varianee constramts. How-
ever. Harrs [1978] Shows that this taper has less resist-
ance o spectrad feakage than o Hann taper.  As long as

only o osingle duta taper s used. there will be g trade-oft

between the resistanee to spedtral feakage and the varnance
ol oospectral estimate

Thomam (1982) ntreduced the mulutaper spectral
analvses techmigue  Birst, the data are multiphed by not
ane. but several leakage-resistant tapers This vields
severd! tapered e series from one record . Tukmy the
DET~ of cadh o mhese 5me seres savena crzenispeddig
are produced whuch are combined o torm oo singie spedtnal
estimate

The tipers are constructed so that cach taper samples
the tme series g ditterent muanner while opunuzing
resistance to spectral ledhage The statistical intormation
discarded by the hirst waper s partially recovered by the
sevond taper. the mtormanon discarded by the first two
tapers o partrally retrieved by the third taper. and so on
Oniy atew Tow-order tapers are emploved. as the higher-
arder tapzrs atlow an unaceeptable tevel ot spectral leak-
age. One can use these tapers to produce an estimate that
v not hampered by the trade-off between Teakage and var-
anee that plagues single-taper estimates, as we will demon-
Sty

Single-taper spectral estintates have relatively Lurge vari-
ance binereasing as a larger traction ot the data s dis-
carded and the bas of the esimate s reduced) and are
nconsistent estimates Gre o the vanance of the estimate
does not drop as one ingreases the number ot datay - To
counteract this, 1ts conventiondal to smooth the single-
taper speltral estimate by apphving a moving average o
the estimate This reduces the vanance of the estimate hut
results i a short-runge loss of frequency resolution and
theretore an increase 1n the bias of the estimate

The multitaper  spectral estmates are formed as o
weighted sum of the egenspectra Therefore the muln-
taper spectral estimate s already a smooth estimate 1t has
less varianee than single«taper spectral estimates which
have been designed to reduce bias, and it s also a con-
sistent estimator - The companson between the bias and
varance properties of the sigle taper and multtaper esti-
mates 1y discussed turther in sections 3 and 4

Another difficulty with seismic data is that the records
are nonstationary, that 1s, the statistical character of the
data changes with position in the record. Theretore «
spectral estimator which weights the data in the center ot
the ume series more heavily than data at the ends can
overemphasize the signal energy in the middle of the
record. This can result in a misrepresentation ot the spec-
trum, as we demonstrate 1in section 3. The multitaper esti-
mate. which discards very little dawa from the record and
weights the data relatively evenly. is not subject 1o this
problem.

Section 2 presents an outline of the basic algorithm.
This outline contains sufficient detail o alfow the reader 10
implement the algorithm but avoids derivations that can
be tound elsewhere. Section 3 describes the seismic data
used in this study and presents comparisons of the spectra

of sermue ume sonies generated by hoth reaional and Toca!

events. We demonstrate the trade-off between spectral
leahage resistance and varidncee of the spectral estimates
produced using the bosear. 200 cosine. and cosine tapers.
We compare the huas and variance of these conventional
single-taper direct spectral estimates with the bhias and
varanee of the multitaper spectral estimates i section 4.
A numierical method for calculating the prolate ergentapers
Is ginven mn the appendiy

20T MUTTEAPER ALGORITHM

The muititaper method s based on o fanuly of tapers
which e resistant o spectral leakage, We authne the
multitaper method hereo and note that more detaled reat-
ments il be tound i the works by Thorsen [1982] and
Londborg [1986)

Suppose  thet we are wnvent the fiite tme series

voro N b which s aset of disarete samples of

4 CONUnUOUs Bme provess VL0 oV T fwe assume @

Gt sample mterval - T without Toss of generalinyd. It

vohas noharmonic components. then ot has the Cramer
spectral tepresentation [Doob, 1933}

\ r(' ’ Virndy

We o wish o estimate the amplitude spectrum

St E Yo twhere £ denotes expected valued
of the continuous tme process 'xva0- ¢ VO 1D from the
nme series vt A conventional diect spectral osti-
mate Y 170 of Sty tound by multiplving the data
Vit aosequence oY called ataper. applving a
DET.

and finatly taking the squared modulus of the resulung
function X' /) Adthough 1 s diserete, 715 continuous,
with /1 = as the Nyguist frequeney 7« . O We
nornulize the wper so that

Z (1“ 1

The spectral leakage properties of the data taper o .
roo 00120 00N T aan be deduced trom ats DFT:

\

i 2411‘ thH
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For conventional tapers the function |4 | has a broad main
lobe and a succession of smaller side lobes. For example.
for the boxcar taper. ¢, - 1 VN and

1 l--¢ FRENAY ‘,n\ 1oy

AU) = — — - _
VI= 3 T N

sSiNnNw/f
sinwf

In this case the function |4 (/)] is readily observed to
have a central lobe flunked by smaller side peaks. (The
phase factor e 'Y "7 results from choosing the time ori-
gin ¢ = 0 to coincide with the first data poirt. It does not
affect the leakage resistance of the aper.) The larger the
side lobes. the more spectral leakage is encountered using
this taper. biasing the estimate X, away from its desired
value. This can be seen by observing that

L= [ av-rxyndr 2

which follows from substituting the Cramér spectral
representation of x, in the definition of X, ., and therefore

L OE= [ 14G-r1s e iar

A good data taper should have a spectral window
A(f—f') whose amplitude is large in the central lobe
region where |/ —f'! is small and has low side lobes at
more distant frequencies. This reduces the bias in the
estimate by preventing the energy in X' at distant frequen-
cies from leaking over to affect the estimate | X, [* at fre-
quency f .

Suppose we wish 10 minimize the bias at frequency f
due to spectral leakage from outside the frequency band
£ =1 < W. where 2W is some chosen bandwidth. We
maximize the fraction of energy of 4 within the chosen

band:
i
f (4 (Pdf

2]

ANW) = — — (3)
J 14y

Since no finite time series can be completely band-limited.,
AN W) < 1 for finite N and nontrivial W. The func-
tional A can be interpreted as follows: in a single-taper
direct estimate of the spectrum of a white noise process at
frequency /. A is the fraction of spectral energy in that
esumate that derives from the frequency interval
if- /1 < W.1—A is the fraction of spectral energy thal
feaks 1n from outside that band.

It 1s convenient from a computational viewpoint to sub-
stitute (1) into (3) 1o express A in terms of the data tapers
"hemselves rather than their transforms. If we seek a
aper tor an N pomt time series. the sequence |g,],%,! can
~eorepresented as an N ovector a. This notation allows us

express (30 matrix form (following the derivation of
a2 Sy of Park et al. [1987). letting the decay rate

<t

vy -2 Coa (4)
aa
oo Rgs components
o
ol L0 N

[

4n prolate tapers
2
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Fig. 2. The five lowest-order 4= prolate eigentapers The
zeroth-order eigentaper v'? is plotied with a solid line. and the
higher-order tapers are plotted with dashed lines.

We seek those values of a for which the functional A is
stationary. This leads to the matrix eigenvalue problem

C-a—-A(NWha=0 (5)
which has as its solutions the ordered eigenvalues
I1>A0> A > A > > Ay | > 0 and associated
eigenvectors v'*'(N W), k=0.1.2.....N¥—-1 (which have
components 1", r=0.1.2.....N=1). Thev"“"(N W) are
discrete prolale spheroidal sequences {Slepian. 1978].
which we also refer 10 as prolate eigentapers. We will
suppress the explicit dependence of v'*' on N and W in
the following A prolate eigentaper with a time-bandwidth
product of P=ANW is called a Pw prolate taper: it concen-
trates  spectral energy in frequency bands of width
2W =2P N. As the Rayleigh frequency 1 .V is the tust
Fourier transform (FFT) frequency bin spacing, a P pro-
late taper will have a main lobe which is 2P "frequency
bins” wide. For instance, tapers for which N¥ = 4 mini-
mize the spectral leakage at frequency / from outside the
frequency band dJefined by [f~—f| < 4 N. For large N
(> 100) one can construct a set of the v'*! for any value
of the time-bandwidth product NW. As noted in the
appendix, this allows the user to calculate one set of
eigenapers v'*' for a fixed vatue of N and 10 interpolate
this set to construct tapers for time series of various
lengths. We have restricted the following discussion to 4=
prolate tapers, but similar behavior is found for other
choices of the time-bandwidth product.

The five lowest-order eigentapers v\*', & = 0.1.2.3.4
shown in Figure 2 have been made for # time series of
length N =128 and time-bandwidth product NH = 4.
The lowest-order taper (k =0) is the familiar 4% prolate
taper advocated ty Thomson [1971. 1977a.b] and Eberhard
11973} and has a shape similar to conventional tapers such
as the cosine taper (Figure 1). The higher-order eigen-
tapers are markedly different from ordinary data tapers
For even values of A. the v**' are symmetric aboutl the
midpoint of the time series. For odd values of k_ the "
are antisymmetric about the midpoint. Al the tapers.
except the lowest-order one. have regions of positive and
negative data weighting. We normalize the tapers so that

N
) ST

Y

i

As the eigentapers v
orthogonal:

are solutions 1o (5}, they are
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4 prolate taper transforms

transform ampitude

0 4 8 12 ‘6
fregue cylu~ts of _,R\,

Fig. 3. Fourier transform amplitudes of the five 4= prolate tapers

shown in Figure 2. using the same conventions for dashed and

solid lines.

vyt =8 (6)
(This can be clearly seen in Figure 2.} This relation shows
that each v'*' can be used to provide an orthogonal sample
of the data lx, |, "

Taking discrete Fourier transforms of the prolate eigen-
tapers produces the spectral windows

Mo
UNW ) =6 T 6 (N We 700 s o (9
FERTY

where we have used the time-centered transform to elim-
inate spurious phase factors in the definition. The func-
tion €, =1 it k is even. ¢, =i if A is odd. The use of ¢,
is a notational convention so that U, is real-valued. Plots
ol the U, for N=128 and VW =4 appear in Figure 3 for
k=0.1,....,4. Most of the energy of the U, is concen-
trated within the specified frequency band as was required
by maximizing (3). The spectral windows corresponding
to the lowest-order eigentapers have impressively small
side lobes, but spectral leakage resistance becomes pro-
gressively poorer as the order of the taper increases. The
lowest-order 2VW eigentapers (e.g., the eight lowest-order
47 prolate tapers) have eigenvalues A, close enough to
unity that they are useful for minimizing spectral leakage.
The eigenvalues A, of the eight lowest-order eigentapers
with time-bandwidth products 4, 3, and 2 are given in
Table | for N=128. For reference. the value of the func-
tional (3) is given for a boxcar taper which concentrates
spectral energy within frequency bands of the same width.
To construct a multitaper spectral estimate, one first cal-
culates the complex "eigencoefficients’ y, (/') by taking a

DFT of the product of the data with each [v,*"},* '

vl
n(f)=3Y vrxer (8)

r 0

An estimate of the spectrum can be made from weighted
sums of the eigenspectra {y, |2 Thomson [1982] formu-
lates the problem of estimating the spectrum of a record
as an integral equation. The solution of the integral equa-
tion is averaged over (f—~W.f+ W) to produce the
smoothed high-resolution spectral estimate:

Al
SUI=K 'Y ) Nwnt? 9)
[t
where K is the number of tapers used. If K 15 not large,
the smoothed high-resolution estimate (9) differs little
from an arithmetic average of the eigenspectra as A, "= 1
for the lowest-order eigentapers.
Although straightforward, (9) is not the best multitaper
spectral estimate to use. An adaptive spectral estimate

A1
z Jd oy ()F
SU) = A (10)

T ldonn?

A O
can be devised which has frequency-dependent weights
d, (/') chosen to reduce bhias from spectral leakage [Thom-
son, 1982}. This technique proves extremely useful in the
analysis of highly-colored spectral processes. At frequen-
cies /' where the spectrum is reasonably flat, the weights
d () = 1, reducing the variance of the spectral esti-
mates. At frequencies f where spectrum has a steep
slope. the contribution from the higher-order eigentapers.
which have poorer leakage resistance, is reduced. The
trade-off between spectral leakage and variance of the
spectral estimate is balanced at each frequency.

The optimal weights d; can be found by minimizing the
misfit of the estimated spectrum to the true spectrum
S (/). This misfit, although unknown. can be estimated
statistically. The resulting equation for the weight d, (/)
1S

. VAL S
d (f) N SUI<EIB O (1)

where Sf) is the true value of the spectrum at frequency
S and B, () is the spectral energy at trequency / that
leaks in from outside the frequency band (/- W /- W)
We replace the unknown value S (/') by its estimate S/ }.
Thomson [(1982] found it adequate to approximate
E\B. () = i (1--A, ), ie., as a constant fraction of the
total variance of the time series:

A
PR NS (12)

Il
We find the estimate S(/) by iteration. We take the
arithmetic average of ly,(/)° and [y, () as an initial
estimate of S(/). then substitute this value into (11) to

TABLE 1. Fractional Leakage of Eigentapers

___P= Prolate
P-4 P=3 P-2

Ao 0.9999999998  0.999999885  0.999948125
Ay 0.999999978 0.999992014  0.997764652
A, 0.999999008 0.999750480  0.962155175
Ay 0.999972984 0995477689 0733922358
Ay 0.999500363 0951033908  0.287339619

As 0993525891 0.725208760
Ag 0.943750573 0.307789684 *
A- 0.721233936 0.060764834 *

Boxcar  0.974748450 (.966410435 0949939339

T, 008
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produce first guesses of the weights d, (/). These weights
are then used in (10) to generate a new spectral estimate
SU‘). and the process is repeated. Convergence is usually
satisfactory within a few cyvcles.

Careful examination of the adaptive spectral estimate
shows that Parseval's theorem is not explicitly satisfied,
1.e.. there is no requirement that the energy of the spec-
trum estimate. integrated over frequency, equal the total
vartance of the time series. This arises from the way that
the multitaper algorithm attempts to compensate for the
effects of spectral leakage. If the expecied broadband bias
E!B. (/)] were to vanish. then (11) would become
d, (41 = A, . and the adaptive estimate (10) would reduce
1o the smoothed high-resolution estimate (9) (except for a
smali multiplicative factor due w0 the departure of the
eigenvalues A, from unitv}. This would occur if the true
spectrum  were  zero  outside  the  frequency  band
Lr 71 W As (1--a.) of the process variance within
the frequency interval |/ -7°] < W is leaked outside the
band. the imiting case &, (/) = A, represents an attempt
by the esumator to compensate for this spectral energy
lost to leakage by boosting the coefficients of the higher-
order ewgenspectra in the weighted sum. When the spec-
trum has a steep slope. the higher-order eigenspectra are
downweighted and the adaptive spectral estimate 1ends
toward the least based eigenspectral estimate v, (/)7

Thomson [1982] analyvzed two synthetic Lime series using
multitaper methods. Both series had fewer than 100 data
points and a numerical precision of roughily 20 bits. In the
first example. 1t was demonstrated that a muliaper
approach could accurately  estimate a spectrum with a
dynamic range of more than seven decades and accurately
infer the existence of harmonic hnes G.e.. coherent
sinusoids) in the date. Thomson also analvzed a 64-point
time series used by Aav and Muarple [1981] in a spectrum
analysis "shootout” comparing 11 spectral estimation tech-
niques, including the maximum entropy method as well as
a single-taper direct spectral estimate and several other
popular spectral estimates. Unlike any of the techniques
tested by Kayv and Marple [1981], a multitaper technique
was able to produce a spectral estimate which was similar
to the true spectrum of the syvnthetic time series,.

3. SPECTRAL CoMPARISONS UsING SEIsMIC Data

We compare @ number of single-taper direct spectral
estimates with the adaptive multitaper spectral estimate
techniques on wide dyvnamic range. high-resolution seismic
data. The advent of digital arrays with 16-bit data loggers
and the proposed 22- or 24-bit precision instruments
demand an improved sophistication in data analysis tech-
niques. We may soon have seisimic data which are
recorded to the same precision as the synthetic examples
of Thomson [1982].

The data used in this paper were recorded on seismom-
eters in the Anza Seismic Telemetered Array. The Anza
array was designed to record high-frequency seismic sig-
nals from local earthquakes. The instruments in this array
measure surface velocity. and the dats are recorded as 16-
bit numbers (this allows a dynamic range of 96 dB). See
Berger et al. [1984] for a more detailed description of the
Anza array.

The multitaper spectral estimate has a smaller variance
at each frequency than a single-taper direct spectral esti-

MULTITAPER SPECTRAL ANALYSIS
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mate. To make a fair comparison between the various
direct spectral estimates and the adaptive multitaper
method, we will smooth each single-taper estimate using a
moving average so that each estimate averages informa-
tion over roughly the same frequency band as a multitaper
estimate using seven 47 prolate eigentapers.

The effect of smoothing single-taper direct spectral esti-
mates in this way is shown in Figure 4. The section of the
seismogram which is analyzed is shown at the top of Fig-
ure 4. The unsmoothed spectral estimates are shown
below on the left. and the smoothed estimates are
displayed on the right below the record. The upper traces
are direct estimates using the Hann taper, the middle
traces are spectral estimates made with a 20% cosine. and
the lower traces are spectrum estimates which employ a
boxcar taper. The amplitude is plotted on a logarithmic
scale on the wvertical axis, and frequency is plotted on a
linear scale on the horizontal axis. Each trace is offset by
a multiplicative factor of 50 from the adjacent traces.
Notice that if one studies the unsmoothed spectral esti-
mates, it is difficult to distinguish any specific features
common to each of the estimates except for a general
linear trend. In comparison. the smoothed spectral esti-
mates have many of the same features. Each major peak
or trough appears at the same frequency in each of the
smoothed estimates.

Unfortunately, since we are using real data. it is impos-
sible to know the true spectrum for any of the examples.
However, the work of Thomson [1982] demonstrates that
the multitaper method provides a reasonable spectral esti-
mate. This is confirmed by a study comparing the multi-
taper estimate with the smoothed direct estimates on a
synthetic seismic wave train with a known spectrum (C.
Lindberg et al., unpublished manuscript, 1987).

To study how tapering affects the spectra of body wave
pulses, we isolate a phase in the middle of a seismogram,
produce spectral estimates using each of the four methods.
and compare the results. The upper graph in Figure §
shows the transverse horizontal seismogram of an earth-
quake which had an epicentral distance of 100 km from
the recording station PFO (in Pinyon Flat, California).
We extract that section of the seismogram corrresponding
to the shear wave arrival and estimate its spectrum by
each method. The spectral estimates are plotied on a
linear-linear scale in the lower portion of Figure 5 and for
clarity are plotted in dimensionless velocity units on the
vertical axis. Each of the four spectral estimates have two
main peaks in the frequency band from 0 to 20 Hz. near 4
and 14 Hz.

These estimates are interesting to compare. Three of
the estimated spectra (those plotted using solid and dashed
lines) have almost identical features (except for the offset
between them). In these spectral estimates the amplitude
of the peak at 14 Hz is about 20% less than the amplitude
of the peak at 4 Hz. The other estimated spectrum {curve
d. plotted with asterisks) does not resemble the other
three estimates closely. The peak at 14 Hz is 10% higher
than any other peak in this estimate. This change in the
relative amplitude of the two spectral peaks would
influence the choice of a corner frequency if these spectra
were converted from velocity to displacement or accelera-
tion.

The three spectral estimates which exhibit similar
characteristics are the multitaper estimate (curve a, plotted
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Fig. 4. (Top) Comparison of unsmoothed and smoothed estimates ot the spectrum of a high-frequency § wave.
The spectra are plotted on a log-linear scale and are offset to facilitate comparison. The boxcar spectral estimates are
graphed with a solid line. The dashed lines at the top of each of the lower figures are spectral estimates employing a
Hann taper. The middle curves are spectral estimates obtained using a 20% cosine taper.

as a solid line), the 20% cosine direct estimate (curve b,
the upper dashed line), and the boxcar direct estimate
(curve ¢. the lower dashed line). The spectrum showing a
different distribution of spectral energy was estimated
using the Hann taper (curve d). The Hann direct spectral
estimate is unlike the other three estimates because it
imposes a different emphasis on the time series. Refer-
ring back to Figure 1. it is easy to see that the boxcar
applies equal weighting to the entire time series and the
20% cosine taper weights 80% of the series equally. Not
surprisingly, using either of these two tapers produces
essentially the same result. However, the multitaper spec-
tral estimate also gives essentially equal importance to
every data point, like the boxcar and 20% cosine estimates
(see Figure 2). The Hann taper puts over 80% of its
emphasis on the middle 50% of the time series and gives
the data in the first and last 25% of the series less weight.
This rejection of data near the ends of the series causes
.he apparent misrepresentation of the distribution of spec-
tra energy shown in Figure 5.

We also compared estimates of the spectrum of a verti-
cal recording of a nuclear explosion. This event had an
epicentral range of 412 km and also was recorded at PFO.
The section of data which was analyzed is bounded by the
vertical dashed lines in the upper trace in Figure 6. The
analysis procedures were identical to those used in the pre-
vious example except that the log amplitudes of the spec-
tra were plotted on the vertical axis.

The spectrum of the nuclear test has a large dynamic
range and has most of its energy concentrated below
20 Hz. By examining the estimated spectra, one can see
that some estimates are more effected by spectral leakage

than others. The two estimates which are less subject to
spectral leakage. the Hann direct estimate (curve d, plot-
ted with asterisks) and the adaptive multitaper estimate
(curve a, the solid line). are very similar. Both of these
estimated spectra clearly show the spectrum of the signal
from 0 1o 20 Hz: from 20 to 60 Hz the spectrum of the
ground noise is visible. The antialias filters of the record-
ing system are 6 pole Butterworth filters which have a
corner frequency of 62.5 Hz. The effect of the filters is
visible in the 60—80 Hz band. In the band from 80 to
125 Hz the ground noise is less than the instrument noise.
The varitance of the adaptive multitaper spectrum is larger
in the low-amplitude portion of the spectrum and hence
appears unsmoothed. This is because the downweighting
of the-higher-order eigenspectra minimizes spectral leak-
age at the cost of reducing the effective number of degrees
of freedom of the estimate at each frequency. If smaller
variance is desired in the low-umplitude portion of the
adaptive multitaper spectrum. then prolate tapers with a
larger time-bandwidth product could be used. _

The spectra shown in Figure 6 which were obtained
using the 20% cosine and boxcar tapers suffer from the
effects of spectral leakage. The spectrum estimate employ-
ing the 20% cosine (curve ¢, the lower dashed line) suffers
less from spectral leakage than the estimate utilizing the
boxcar, as expected. The leakage of spectrum estimated
using a 20% cosine taper hides nearly all the features in
the ground noise between 20 and 60 Hz. The effect of the
antialias filters is completely obscured. The apparent
energy in the 20% cosine spectrum estimate is larger than
the instrument noise in the 80--125 Hz band by a factor of
10. The performance of the spectral cstimate obtained
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Fig. 5. A multitaper spectral estimate (solid line, labeled a) of the

frequency content of an SH wave (top) is compared with direct
spectral estimates using the boxcar taper (fine dashed line, labeled
b). 20% cosine taper (coarse dashed line, labeled ¢). and Hann
laper (asterisks, labeled d). The spectra are plotted using linear
scales for the horizontal and vertical axes. The boxcar. 204
cosine, and multitaper estimates of the § wave spectrum are
almest identical. but the Hann taper estimate is substantially
different. This is because the Hann-tapered spectra overem-
phasize the data in the center of the time series and downweight
data points toward the ends of the record. The section of the
time series which was analyzed is bracketed by dashed lines in the
seismogram at the top.

using a boxcar taper (curve b. the upper dashed line) is
even worse, since it does not exhibit any of the features of
the true spectrum between 20 and 125 Hz.

These examples show that each of the spectral estimates
has different advantages. The smoothed spectrum esti-
mate emploving a boxcar taper produces a good estimate
of the large-amplitude portions of the spectrum but has
very poor speciral leakage properties and is not of much
use for spectra which have a large dynamic range. The
smoothed spectrum estimate using a Hann taper is less
affected by speciral leakage, but this estimate can
misrepresent the large-amplitude portion of the spectrum.
A smoothed spectral estimate incorporating the 20%
cosine taper combines the best properties of the spectral
estimates which use the boxcar and the Hann tapers. It
retrieves the large-amplitude features aimost as well as the
boxcar estimate and has spectral leakage properties which
are sufficient for many geophysical applications. The adap-
tive multitaper estimate has even better performance.
representing the large-amplitude spectral components as
accurately as the boxcar estimate and having excellent
spectral leakage properties.

We have also made multitaper estimates of the spectra
of more than a dozen events recorded at local and regional
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distances by the Anza array. Multitaper techniques like
the ones presented here and by Park er al. {this issue}
appear 10 be useful 10ols for seismic data analysis.

4. STATISTICAL COMPARISONS

We compare the broadband bias and variance of the
smoothed single-taper direct spectral estimates with the
smoothed high-resolution and adaptive multitaper esti-
mates. We consider smoothed single-taper and multitaper
spectral estimates whose values at some frequency / are
formed by averaging seven direct spectral estimates which
concentrate the spectral energy at frequency / mainly
within the frequency band (/—W./- W), where
W=4:N (4 times the Rayleigh frequency I, N). There-
fore we use 47 prolate eigentapers for the multitaper esti-
mates: the seven lowest-order 4 eigentapers have good
resistance 1o spectral leakage (see Table 1), but we do not
use the seventh-order 4= prolate eigentaper. it allows
excessive spectral leakage. as A- = 0.721233936. We
compare the multitaper estimates with a smoothed single-
taper estimate S, (/') which is formed by averaging the
seven direct spectral estimates X, (/- A% j = -3,
—-2.....2. 3 obtained using a taper 'a (1))} i.e..

(13)

5o
SUY=UT Y X (=i N

This estimate is mostly an average of spectral energy from
the band (f —4 N, £~ 4 N). (The main lobes of tapers

6202

4000 l by
v 2000 : I bt .
Z - " RO |A."l|‘||' 'l Gl
,8“ NO’ ”ﬂﬁ'hv ""»\' ’k-' lll‘ l"' N K P
© -2000F T ;

Jelolol 5 | o

a & 2 5 2¢ !
TivT ISECSY
SPECTRA. LEAKALL COVPAR S0\
107

COUNTS/SEC
3

19-2 i ) “
" ' u . 4

03 b L SIGNAL-——— GROUND NOISE 4.{;;},&25 oo
B |
o 20 407 8C 8c o e

FREQUENDY (1)

Fig. 6. Comparison of the leakage of various estimates of the
spectrum of a vertical seismogram recorded 412 km away from a
Nevada Test Site explosion. The spectral estimate using a cosine
taper (asterisks, labeled d) and the multitaper spectral estimate
(solid line, labeled a) give good representations of the spectra of
the seismic signal (0 --20 Hz) and ground noise {20 --60 H2).
The spectra are plotied using a log-linear scale
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TABLE 2. Siatistical Comparison

Yt Fractional
Estimate Variance  leakage {1 —A)
Smoothed boxcar 1.0000 0.0367
Smoothed 20% cosine 1.0814 0.0192
Smoothed Hann 1.8142 0.0093
Smoothed high resolution 1.0196 0.0094
{seven 4m prolate eigentapers)
Adapative multitaper 1.0004 0.0094

iseven 4 prolate eigentapers)

other than the boxcar taper are wider than 2/.V, so this is
not strictly correct, but we will make this approximation.)

4.1 Variance

To gain some idea of how smooth the estimators are,
we compare the variances of each spectral estimate for a
time series composed of Gaussian white noise. For
single-taper estimates we define the covariance matrix

o= LB - NE G N
L2 2
(14)
- Jayivag i
for 1.j =-3,-2.....2.2 [see Thomson, 1982, equalion

4.1]. where 7 is the process variance defined in (12) and
4/ is the spectrai window introduced in (1). If the
single-taper estimates X, (f ~i'V) and X (/' ~/: N) are
uncorrelated for i = j. then A is a diagonal matrix. If the
amount of correlation of the estimates X, (/ =i/ V) is
such that one or more of the X,(f~i/N) can be
expressed as a linear combination of the others, then A is
a singular matrix, with at least one zero eigenvalue. In
practice. A has a behavior which lies somewhere between
these extremes.
For white noise data the expected value of §, (f) is

k)
EIS, () =%(r3 R
but as

tfor all 4,

and E'S, () =l The variance of S, (/) is

ENS, (N ~ (EIS, (f)})? (15}
The first term of (15) is
. s 1< S T A S
A D= A ! Ly RN
EVS, () 49,‘;3511/‘11‘/ N)! LY, i AV)I'

As each function |X, (f ~i/N))! is the sum of squares of
two Gaussian random variables, we can show that
i3

_ ot
ENS, UM =35 T X [, 1

‘ L) 3

[Papoulis, 1977, chapter 11], so
_ ) 3 3 .
varlS, Ml ==Y T I\, 2
49 by 3

For the smoothed periodogram estimate (i.e.. direct
estimate using a boxcar taper). \, =4, . and Var{S, ()] =
(oY 7). Values of (7/o*) VariS, (f)} for the smoothed
periodogram, 20% cosine taper and Hann taper direct
spectral estimates are tabulated in Table 2. Notice that as
more data are discarded by the taper, the variance of the
spectral estimate increases.

For the smoothed high-resolution multitaper spectral
estimate (9).

1

A1
e 3 GHE !y (]
A0

=ﬁ/tl(A)'
K A

AU

EISUO!

When the K =7 lowest-order 47 prolate eigentapers are
used, then E{S{f)} = (1.0095) s, so the estimate S (/)
is mildly biased for white noise data. Also,

VarlS () = ENSUON — (E1S()?
But

A T A1
EH,V& U‘)Izlﬂ'u.)lzl = Z z [E”)X U)I::

A DA

: E”)'A U)I:: - lr;ﬁu]

as the eigentapers are orthonormal (equation (6)) so

RN ST S
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|
at A 1

K 5\
When the K =7 lowest-order 47 prolate eigentapers are
used, then VarlS(f) = *(1.0196)/7. Therefore the
smoothed high-resolution multitaper estimate has only
slightly more variance than the smoothed periodogram
estimate for Gaussian white noise data. .
For the adaptive spectral estimator, d, =\/Z for white
noise data {equation (4.5) of Thomson [1982)). Therefore
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For the A =7 lowest-order 4 prolate eigentapers,
Var!SU)I = %(1.00038)/7. Therefore the adaptive mul-
titaper estimate has slightly less wvariance than the
smoothed high-resolution estimate and slightly more vari-
ance than the periodogram estimate.

4.2. Bias

It is not useful to compare the bias performance of
these spectral estimates for white noise data. One is most
interested in a measure of broadband bias. Broadband
bias is caused when spectral energy at one frequency leaks
away to affect the spectral estimate at a distant {requency
and is an important factor to consider in the estimation of
spectra of colored processes.

We 1ake as our measure of broadband bias the fraction
of energy (1—-A) in the frequency band |f—/'I < W that
leaks out to affect the estimated spectrum at other fre-
quencies. Suppose that the record consists of a single
sinusoid. so that the spectrum is highly colored. The Ath
eigenspectrum retains A = A, of the spectral energy of the
sinusoid within a frequency band of width 2W centered on
the sinusoid frequency. The fractional leakage of the
smoothed high-resolution spectral estimate is

2 flmf)! dar

l“A=1_k()
T Lok
A0 k
.
= - —=
s
A

ko0

If we use the seven lowest-order 47 prolate eigentapers in
the estimate. A = 0.99057, so 1--A==0.00943. For the
adaptive multitaper spectral estimate, a numerical calcula-
tion shows that 1 —A = 0.00256.

The smoothed single-taper direct spectral estimates are
also biased when the process has a colored spectrum. A
single periodogram estimate allows

[IRY
I—-A= f |4 (Fdf = 1 - 0903 = 0097
N
of the energy of a single sinusoid to leak outside its main
lobe. The smoothed periodogram estimate allows
3 4.\

1 SN
— A = —_ - - 2 =~
1 3 ): f A~ ldr = 00367

of the energy in |f—f’|< 4/N 10 leak out. For the
smoothed Hann taper estimate. we find | — A = 0.00934,
while the smoothed 20% cosine taper estimate allows
1—A=0.0192 of the sinusoid's energy to leak out of
lf=risw.

The Hann and 20% cosine tapers do not permit as much
spectral leakage as the boxcar taper. but only the
smoothed Hann taper estimates exhibit broadband bias
characteristics which are as good as the multitaper esti-
mates. Numerical experiments using the w-square and -
cube source spectrum models of Aki [1967] demonstrate
that spectral estimates employing a boxcar taper are inade-
quate for representing the source spectrum roll-off. The
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Fig. 7. Comparison of the variance and broadband bias of several
single-taper spectral estimates (solid circles) and the multitaper
estimates (solid triangles).

other tapers are sufficient unless the spectrum rolls off
more steeply than f 4.

Clearly, for smoothed single-taper speciral estimates
there is a trade-off. The more severe the taper. the less
spectral leakage contaminates the estimate but also the
larger the variance of the estimate. The multitaper esti-
mates manage to defeat this trade-off by using several
orthogonal leakage-resistant lapers in a single estimate.
The relative variances and fractional spectral leakage that
are associated with each spectral estimate are listed n
Table 2 and are plotted in Figure 7 for comparison.

5. CONCLUSIONS

Multitaper spectral analysis techniques offer the
seismologist formal and practical advantages over single-
taper techniques. Adaptive reweighting of eigenspectra
according to the predicted level of spectral leakage enables
well-constrained smoothed spectral estimates in portions
of the spectrum that have large amplitude. while retaining
excellent resistance to spectral leakage in the region where
earthquake spectra exhibit a steep roll-off. Comparisons
between direct spectral estimates produced using boxcar.
Hann. and 20% cosine tapers show that the boxcar taper
estimate is contaminated by spectral leakage, that the
Hann taper estimates can be misleading in the high-
amplitude portion of the spectrum. and that the 20
cosine taper offers a compromise between these two
extremes. Therefore a 20% cosine taper may be adequale
in many cases but would not be suitable for the analysis of
either an unusually dispersive or unusually band-limited
seismic signal. However, these pathological situations
present no difficulty for the adaptive multitaper estimate

There are dvawbacks to using the multitaper method
The adaptive multitaper algorithm consumes more com-
puter time, since several FFTs must be computed for cach
time serics and one needs to calculate a set of prolate
tapers for each time series length. The computational bur-
den is becoming a less serious problem as computer

P
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speeds ncrease and the cost of computation drops.  Also,
we have tound it adequate to calculate the prolate eigen-
tapers once for a time series of length 128 and generate
tapers of other lengths .V > 128 by interpolating the 128-
point tapers using cubic splines (see the appendix).

APPENDING CALCULATING P PROLATE EIGENTAPERS

We follow a procedure similar to that outlined in the
appendix of Thomson [1982] to calculate eigentapers which
have a given tme-bandwidth product VW and length N.
A set of standard tapers of length V' > 100 is constructed.
We use V'~ 128, as a series whose length is a power of
two 1s comvenient for calculating DFTs of the taper. The
matrix eigenvalue problem (5) is then solved for the larg-
est 2N'W eigenvalues and the associated eigenvectors
ustng EISPACK routines TREDI, BISECT, TINVIT, and
TRBAKL [see Gurbow et al, 1977). This procedure deter-
muines only the largest eigenvalues and their eigenvectors
of a matnx. avoiding the numerical burden of fully
decomposing the matrix. In this manner one calculates
the prolate eigentapers for a time series of fengith V',
Using the algorithm described by Thomson [1982]. one
approximates the discrete time tapers with the continuous
tme prolate spheroidal wave functions in order to set up
an egenvalue problem based on Gaussian quadrature.
One obtains discrete tapers at nonuniform sample points
that can be interpolated to produce tapers with even sam-
phing and of a given length. In our applications we have
chosen 1o use spline interpolation routines to interpolate
the evenly spaced tapers of length N to produce tapers of
length v~V
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Strict Bounds on Seismic Velocity in the Spherical Earth

PHILIP B. STARK, ROBERT L. PARKER, G. MASTERS, AND JOHN A. ORCUTT

Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla

We address the inverse problem of finding the smallest envelope containing all velocity profiles
consistent with a finite set of imprecise r (p) data from a spherical earth. Traditionally, the problem
has been attacked after mapping the data relations into refations on an equivalent flat earth. Of the
two contemporary direct methods for finding bounds on velocities in the flat earth consistent with
uncertain 7 (p) data, a nonlinear (NL) approach descended from the Herglotz-Wiechert inversion
and a linear programming (LP) approach, only NL has been used to solve the spherical earth prob-
lem. On the basis of the finite collection of 7 (p) measurements alone, NL produces an envelope
that is too narrow: there are numerous physically acceptable models that satisfy the data and violate
the NL bounds, primarily because the NL method requires continuous functions as bounds on 7 (p)
and thus data must be fabricated between measured values by some sort of interpolation. We use
the alternative LP approach, which does not require interpolation, to place optimal bounds on the
velocity in the core. The resulting velocity corridor is disappointingly wide, and we therefore seek
reasonable physical assumptions about the earth to reduce the range of permissible models. We
argue from thermodynamic relations that P wave velocity decreases with distance from the earth’s
center within the outer core and quite probably within the inner core and lower mantle. We also
show that the second derivative of velocity with respect to radius is probably not positive in the
core. The first radial derivative constraint is readily incorporated into LP. The second derivative
constraint is nonlinear and can not be implemented exactly with LP. however, geometrical argu-
ments enable us to apply a weak form of the constraint without any additional computation. LP
inversions of core 7(p) data using the first radial derivative constraint give new, extremely tight
bounds on the P wave velocity in the core. The weak second derivative constraint improves them

slightly.

INTRODUCTION

There are very few kinds of geophysical data from
which we are able to draw sound inferences about deep
earth structure. Most of the time, we are of necessity
content finding an earth model that adequately accounts
for our measurements, disregarding the range of models
that predict the data equally well, any of which might
resemble the actual earth more closely. Contributing to
the nonuniqueness of the solution is the paucity of data
available versus the complete description of the earth we
seek and the fact that our few data are inexact. Even if
we had an infinite amount of noise-free data, deliberate
approximations in our assumptions (e.g., that the earth is
spherically symmetric) may force us to treat the data as
inexact. The issue of nonuniqueness can sometimes be
resolved by choosing to optimize some property of the
earth model while fitting the data, resulting in a problem
with only one solution. In other cases, one can delineate
the range of models that satisfy the data and the assump-
tions of the derivations. One such problem is finding a
corridor in the velocity-depth plane within which every
velocity model satisfying given seismic travel time data
must lie. Since travel time data include triplications and
other complications, it is desirable to work with
()= T() - pA(p), the vertical delay time as a func-
tion of ray parameter p instead. T is the travel time, and
A is epicentral distance in degrees. Ideally, r (p) contains
the same information as travel time data, T(A), but is a
monotonic function, continuous except where there are
low-velocity zones. Estimating 7(p) from the original

Copyright 1986 by the American Geophysical Union.
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records is a nontrivial matter, but we shall assume that
this step has been taken successfully.

The inverse problem of finding the maximum and
minimum velocities at a given radius consistent with a set
of measurements of 7(p) on a spherical earth traditionally
has been attacked after an exact mapping into a similar
problem for a flat earth. (7(A) then becomes T(X),
where X is epicentral distance in kilometers.) There are
two quite different approaches to the flat earth problem:
Bessonova et al. [1976] developed a nonlinear scheme
(NL), a descendent of the Herglotz-Wiechert integral
solution; Garmany et al. [1979] transformed the problem
so that the data relations were linear and solved it with
linear programming (LP). Both NL and LP require the
assumption that there are no low-velocity zones in the flat
earth, i.e., that dv/dz > 0, where v is seismic velocity as a
function of flat earth depth z. or that the effect of low-
velocity zones has been removed from the 7 (p) data. Bes-
sonova et al. {1974, 1976] discuss how to preprocess the
data 1o remove the traces of low-velocity zones so that NL
may be applied; Orcurt [1980] shows how the data may be
prepared similarly for LP inversion.

The work of Jessonova et al. [1976] is the latest in a
chain of inversions of travel time data relying upon the
Herglotz-Wiechert integral solution (4ki and Richards.
1980, vol. II, chapter 12}: other notable papers in the
series include Gerver and Markushevitch [1966), Wiggins et
al. [1973] and Bessonova et al. [1974]. One of the explicit
aims of the 7 method (NL) of Bessonova et al. {1974] was
to avoid extrapolating T(X) curves from the available
finite collection of measurements. Unfortunately, the
extrapolation was merely moved from T{X) to 7(p): NL
requires continuous bounds on r over a range of p. One
could imagine using nonparametric estimates of r(p) to

13,892
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construct continuous bounds in a consistent way, although
this is not what is done in practice. Bessonova et al. [1976]
used a statistical technique for estimating confidence inter-
vals for = at fixed values of p, but their revision of NL
still needed continuous bounds on 7 (p) which they con-
structed by interpolating between the computed points.
Interpolation of this sort can violate the maxim that an
estimate of a function should not deteriorate if more
information becomes available: the interpolated bounds
for + would be pushed out if an additional wide confidence
interval for r were computed at a p between two narrow
confidence intervals. Interpolation would be acceptable if
it did not influence the results unduly, but we show that it
can produce radical changes in the velocity-depth
envelope. This was not apparent in earlier comparisons of
LP and NL [Garmany er al., 1979]. It is very difficult to
predict the effect of different data interpolation schemes
on the models NL finds because the data and models are
nonlinearly related. Interpolation may rule out models
that satisfy the finite set of data and yet may allow
unphysical models that violate the assumptions of the
method. For example, we must insist that candidate velo-
city models be single-valued. Since NL builds its modeis
from the continuous data bounds, the bounds themselves
must be legitimate 7 (p) profiles, which in general they are
not. When they are not, NL modifies the continuous data
bounds so that they do correspond to realizable velocity
models. The rather ad hoc procedure may result in new
"data" that violate the original bounds.

These difficulties of NL are not present in the LP for-
mulation of the problem. LP directly incorporates the
constraint that candidate models be physically realizable: it
avoids the problems of multivalued velocity functions in a
straightforward and consistent fashion. LP escapes the
need to interpolate by working in the other direction:
rather than construct velocity models by transforming the
data bounds (which must then be defined over a continu-
ous range of p), LP examines all models that satisfy the
finite collection of data and chooses those with the
greatest and least velocities at some depth. It is possible
to use LP to discover the envelope containing all physical
7(p) profiles that satisfy the finite data set since 7 itself
could be used as the penalty functional, but this is not the
basis of the inversion.

We would like to be able to incorporate other a priori
information about the range of possible earth models into
our inversions to tighten the velocity-depth bounds. The
assumption that dv/dz 2> 0 is necessary with LP and NL
but translates to an ad hoc proscription in the spherical
earth: dv/dr < v/r. This allows low-velocity zones in the
spherical earth provided velocity increases more slowly
than radius. A preferable and more powerful constraint is
that dv/dr € 0: no low-velocity zones in the spherical
earth. We support this assumption with thermodynamic
arguments applicable to the outer core and less stringently
to the inner core and lower mantle (Appendix A). The
new constraint on the models is linear and so may be
easily incorporated into LP inversions. This restriction
would have to be posed in terms of the interpolated r (p)
bounds to be used with NL. Finding the correct interpola-
tion is practically impossible because it depends non-
linearly on all the data simultaneously.

There are no inherent limitations to the avcuracy of LP:
the limits are set by the precision of the machine compu-
tations and the number of basis functions one uses to
represent the earth. This has been proven rigorously by
P. B. Stark (unpublished manuscript, 1986), who also
proves that within reason, the LP results are insensitive to
the particular choice of basis functions. In Appendix B we
exploit the linearity of the data relations in the LP formu-
lation and the convexity of the spherical earth to flat earth
mapping to prove that the extremal bounds in the spheri-
cal earth are just the extremal bounds in the flat earth
mapped into the spherical earth. Gerver and
Markushevitch’s [1966] flat earth mapping provides a one-
to-one correspondence between spherical and flat earth
velocity models predicting exactly the same 7(p) data for
all values of p. However, when there is one velocity
mode! that satisfies a finite and inexact data set, there are
usually many. It is entirely possible that the velocity
model (there may be more than one) that maximizes the
flat earth velocity at some depth while satisfying the data
might not be the model that maximizes the spherical earth
velocity at the corresponding spherical earth depth since
depths and velocities in the two domains are nonlinearly
related. Thus the coincidence of the extremal models is
less than obvious although it has been tacitly assumed
heretofore.

Values of 7 (p) are difficult to obtain in some ranges of
p, while A(p) measurements in that p interval may be
more readily available. It is therefore very useful to be
able to treat A(p) data jointly with 7 (p) estimates. The
LP formulation may employ A{p) and 7(p) data con-
currently [Orcutr, 1980].

To test the LP approach in the spherical earth, we have
inverted the definitive r (p) data set for the core [Johnson
and Lee, 1985] reduced from 90,000 contemporary Inter-
national Seismological Centre (ISC) travel times: it is
unlikely that better spherically averaged values of 7 (p) for
the deep interior of the earth will become available for
some time. Like Johnson and Lee, we treat the scatter in
the estimates derived from the original T (A) observations
as statistical noise disturbing an ideal sphericaily averaged
7(p) curve and take the 99.9% confidence intervals as
strict bounds on the uncertainties of the r values. LP pro-
duces generally wider bounds than NL inversion. This
might indicate that LP is too conservative, except that the
bounds found by LP are achievable: for every velocity-
depth point on the bounds there is a model that contains
that point and satisfies the finite 7 (p) data exactly. The
NL bounds are thus sensitive to the interpolation of the
7(p) limits, as mentioned earlier.

Johnson and Lee ['985] constructed five 7 (p) data using
A(p) to constrain the derivative to incorporate additional
information in a range of p where 7 (p) data were unavail-
able. We compare LP inversions of their data with and
without these values and also with some A(p) data used
directly. We conclude that the five data have a major
influence on the inner core boundary and determining the
shape of the envelope in that vicinity., When the A(p)
data are used directly, a wider and probably more reliable
corridor results.

The finite set of 7 {(p) and X (p) data is not very restric-
tive: without additional assumptions the LP bounds are
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fairly wide, particularly within the inner core where the flat
earth mapping is strong. Forcing the first radial derivative
of velocity to be nonpositive substantially narrows the LP
bounds. Assuming that the second radial derivative of the
P wave velocily in the core is nonpositive enables us to
tighten the bounds a bit more using a geometrical con-
struction. Both radial derivative constraints are justified
by thermodynamic arguments in Appendix A. The final
result, based on nonpositive first and second radial deriva-
tives, is an extremely narrow envelope of velocities in the
core consistent with the data. This envelope, roughly
comparable to that of Johnson and Lee [1985] but tighter
particularly in the inner core, is reached by physical argu-
ments.

METHODS

We denote velocities in the radially symmetric spherical
earth model by v= v(r) and velocities in the flat earth by
v = v(z). Depth - is measured from the surface of the
flat earth and radius r is measured from the center of the
spherical earth. The velocity at the surface of the sphere,
which is the same as at the surface of the half-space, is
w = v(a) = v(0). The variables v, r, v, and z are
related by (Gerver and Markushevitch, 1966]

p = Y4 :=—aln(L) (1)
a

Values of the spherical earth ray parameter d7/dA may be
converted to their equivalent flat earth values, d7/dX. by
multiplying by the number of degrees per unit distance at
the surface of the sphere.

The forward problems of mapping a one-dimensional
monotonic flat earth velocity profile into 7 (p) and X (p)
are solved by the familiar transformations [4ki and
Richards. 1980, vol. 11, chapter 12}:

V2]

T(p)=2f (iz)y?=p) dz
0
)

x@ =2 poeri-pya
0

where z (p) is the turning depth of the ray with ray param-
eter p, ie., the depth to velocity 1/p. Changing the
independent variable of integration to v, we find

IVp

rip) = Zf (1= pY)” % dv

Iip
Xp)= 2f p (Wi pYH % dv

For a particular choice of p = p, these integral relations are
linear functionals of dz/dv:

Lp

'

r,[clsf(p,)=2f wi=-pdie) dv (2)

lip,

Xkl=Xxp)r=2 f p v l=—pH ) de  (3)

where ((v) = dz/dv is the function we will use to
represent the earth model. We can find z(v) by integra-
tion if we know {(v) and w:

Z. )= z(v)=f L) dv (4)
Z. It} is a linear functional of {(v), and knowing z (v) is
equivalent to knowing v{(z) provided there are no low-
velocity zones, that is, provided {(v) > 0, so that both
z(v) and v (z) are single-valued.

We take certain confidence limits on 7 (p) and X (p) to
be strict bounds on / observations of 7 and m observa-
tions of X i.e., we assume that we are given two n vec-
torsd™ andd™ such that

d <7 kl<d” i=1....1 (5)
d < Xkl<gd- i=I+1....n (6)

where n=1[+m is the total number of data. We assume
that the observations are ordered such that
p < pa.i=l ... =1, and i=1I+1,.... n—1. The max-
imum velocity about which we have information is then

vy =max{ /p,. /p.,} . The data relations expressed in

(5) and (6) are a set of n two-sided linear inequalities in
L. Following Garmany er al. [1979]. we solve the problem
of finding strict limits on the range of velocities by deter-
mining the range of depths in which each velocity is
allowed: we alternately maximize and minimize Z, [{] for
each target velocity v, subject to the collection of 2n linear
inequality constraints (5), (6), and the positivity constraint
{(v)>0. Each of these optimization problems is an
infinite-dimensional linear program in the space in which
we decide to embed {. Appendix B shows that the solu-
tions to these problems in the flat earth are just the
extremal bounds in the spherical earth mapped by equa-
tions (1), so we may solve the spherical earth extremal
bound problem by mapping the data into the flat earth,
solving the flat earth problem and mapping the results
back into the spherical earth.

SOLVING THE FLAT EARTH EXTREMAL BOUND PROBLEM

In practice, we must describe the unknown earth model
{(v) with a finite collection of numbers — a computer can
not sture a value of ¢ (v) for every value of v. If we write
{ as a linear combination of a particular finite set of basis
functions, the coefficients in the linear combination consti-
tute a finite description of the model a computer can use.
The basis set is acceptable if we are able to approximate
the data and depth mappings of any { arbitrarily well by
using more and inore basis functions of the class that we
choose (equivalently, if the span of the basis functions is
weak-star dense in the limit). The integrals for the map-
pings may be performed for the basis functions individu-
ally, and the resulting numbers, scaled by the coefficients
in the expansion, may be added to give the value of the
integrals performed on ¢ since the integrals are linear in {.
We can avoid numerical quadrature and retain the highest
accuracy in our computations if the integrals can be per-
formed analytically for the chosen basis functions.

Delta functions are a natural basis set for the flat earth
problem because they give rise 1o homogeneous layers in
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v. Intuitively, we see that such layers allow changes in
velocity to be made as early or as late as possible. We can
support this more rigorously: the fundamental theorem of
linear programming [Luenberger, 1973] states that if there
is an optimal linear combination of the basis functions that
solves the problem, there is an optimal solution comprised
of a linear combination of at most as many basis vectors
as there are constraints, If we were to choose boxcar
functions to approximate the solution, then in the limit as
the number of basis functions goes to infinity and the
boxcars become vanishingly narrow, we would still require
at most 2n basis functions to represent the solution: the
solution would tend to a sum of delta functions. (Notice
that in using a delta function basis and finite-dimensional
linear programming, we must widen the constraints on {
from { >0 to {2 0; this extension apparently causes
difficulties in the velocity domain because we lose the con-
straint that v (z) is single-valued. However, if the solution
is interpreted in the limit as the lower bound on ¢
approaches zero, merely discontinuous velocities are gen-
erated.) The delta function basis has some practical
benefits as well: the integrals (2), (3), and (4) are trivial,
and we may guarantee positivity of { (v) just by requiring
positivity of the coefficients in the basis expansion.

While delta functions are truly optimal only when there
is complete freedom to place the layers where needed (i.c.,
in the limit of an infinite number of basis functions), we
can guarantee flexibility near the target velocity v where it
is most crucial by inserting basis functions on either side
of v. This tailoring of the basis expansion to the target
velocity has produced substantial improvements in the
computational efficiency over earlier realizations of LP
le.g.. Garmany et al., 1979]. P. B. Stark (unpublished
manuscript, 1986) provides a theoretical account of the
improvement,

The choice of a delta function basis for dz/dv suggests
that we are approximating a problem where
z(v)€ BVIw,y], the Banach space of functions of
bounded variation on the interval {w,y] with the variation
as the norm. Our delta function expansion of dz/dv leads
to a step function expansion of z(v) € BV upon integra-
tion. Spacing the basis functions evenly in velocity is not
desirable: most of the sensitivity to the data occurs close
to the surface because the integral (2) depends on I/v. It
is preferable to space the steps evenly in slowness, i.e.,
reciprocally in velocity. We have found that the numerical
solution is much more stable with this spacing, partly
because it inmiproves the conditioning of the mapping
matrix. It can be proven that the span of a reciprocally
spaced set of step functions is weak-star dense in
BV([w.y] in the limit, so a basis of this form is accept-
able. Our preliminary basis set shall be

b(v)y=80-v) (7)
where
= 1 - -
v, = U+ (L= Dh j=1,....L=-2
and
e

Recall that w is the minimum velocity and y is the max-
imum one. When we choose a certain target velocity v,
we insert extra basis functions b,_; and b, at
VV{1/v+ah) and 1/(l/v—ah), where a is a small posi-
tive constant, about 0.1 typically.

We now write {, the unknown earth model, in terms of
its basis expansion and perform the integrals (2), (3), and

4):

L L
(=Y b=X¢80v—v)
J=1 J=1
nkl=2%F ¢, 42— pA" (8)
jl/p,
xll=2Y o 2= p " (9)
L1/,
Zki=X¢ (10)
g,

where the index set J, = {j v, <x). Note that (9) is
unbounded if there is a basis function at v = 1/p,,
i €{1,...n), and so that particular choice must be
avoided. This minor complication has been resolved in a
consistent and acceptable fashion by defining the integrals
on open intervals, so it is not a fundamental limitation.
Equations (8), (9), and (10) may be written as vector dot
products:

rll=7 - amn
Xkl=X -¢ (12)
Zll=2 -7 (13)

In (11)—(13), ¢ is the vector of coefficients ¢, in the basis
expansion (7) of ¢,

20, =pH" v < Up,
Ty = 0 v 2 Up
_ 22 G7=pD oy < Up,
X, = 0 v > 1p,
1 v < v
Zy =10 V2
For a given v we wish to minimize
+Z, - { (14)
subject to
{20 J=1..L
d <7, {<dr i=1,..,1
d- <X, - {<dr i=I/+1,....n

Minimizing +Z,-{ minimizes the depth to v, and mini-
mizing —Z ,-{ maximizes the depth. These are standard
finite-dimensional linear programs, and software to solve
them is widely available. Two modcrately large linear pro-
grams must be solved for each target velocity so the com-
putational effort is far from trivial.
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CONSTRAINING THE RADIAL DERIVATIVE OF VELOCITY

An essential assumption of the foregoing derivation is
that £(v) 2 0, i.e., that there are no low-velocity zones in
the flat earth. This becomes the ad hoc requirement that
dv/dr < v/r in the spherical earth: there may be low-
velocity zones. The low-velocity zones are mild in the
crust and upper mantle because velocily increases no fas-
ter than radius, but in the core they can be major features
of the solution. It is geophysically preferable to assume
that there are no low-velocity zones in the spherical earth:
dv/dr £ 0. In Appendix A we argue that this should be
true within homogeneous, adiabatic regions in the earth
composed of "normal" materials. These conditions are
generally thought to apply appresimately throughout the
outer core, and are probably not violated within the inner
core. The new assumption does not contradict the previ-
ous constraint on the flat earth derivative: it is more res-
trictive:

dv <0 ) a

= € 0e M) = (15)

dr v
a result easily obtained from (1). Inequality (15) is linear
in {. so it can be incorporated into the inversion with the
same mathematical machinery. However, we may no
longer use a delta function basis for { because delta func-
tions violate the new constraint everywhere they fail to
vanish. If (15). which depends on 1/v, is to apply exactly
over the support of a ba.is function defined on an inter-
val, the basis function must also depend on 1/v. Loga-
rithmic functions in z (v) correspond to 1/v basis func-
tions for { = d=/dv . The span of reciprocally spaced pieces
of logarithmic functions is also weakly dense in BV [w.y]
in the limit as tite number of basis functions increases
without bound so tiis basis is acceptable. P. B. Stark
(unpublished manuscript, 1986) proves that the solution is
not sensitive to the choice of basis functions provided they
get closer and closer together as more of them are used
and provided enough of them are used. The logarithmic
functions are particularly good because fewer of them are
required than of other basis functions (e.g., ramps) to get
results of the same accuracy. We proceed by expanding {
in a new set of basis functions ¢, and performing the
resulting integrals (2), (3), and (4). Let

where
MGe)={1.0< v < 1.0, otherwisel

The velocities v, are defined as in equation (7) except that
they have been put in increasing order (the two velocities
bracketing the target velocity are no longer at the end of
the list). Now

T, [¢]

Y IR0, - F®)]

1y I
Xkl =2Y ¢, @, -6
J

tip,

o min (o]
For

v,

Z I

where
F.8) = 2p (06— tang)
8, = cos '(pv)
fﬂ)u = cos !(p, min [Vj‘, e h

These three expressions may also be written as vector dot
products (11), (12), and (13), with the new identifications

F®,)-F®,) v <1/p
Tu = 0 v, 2 1/p,

20,-6,) v, < 1/p
X, = 0 v 2 1/p,

In (min {L‘,VJH] /v) v < 1p,
Z, = 0 v 2 UYp,

The new finite-dimensional problem with radial derivative
constraints is to minimize

+Z, -
subject to the constraints
azy 20 j=1....L
d, T <d” i=1...1

T <
a- <X, <d” i=I+1,....n

Minimizing +Z,-{ minimizes the depth to v. and mini-
mizing ~Z, -{ maximizes the depth. These are also stan-
dard linear programs and may be solved straightforwardly.

APPLICATION TO THE EARTH'S CORE

We have applied the theory to 7(p) data for the core
obtained by Johnson and Lee [1985] (Figure 1}. We follow
Johnson and Lee in interpreting the scatter of the data as
a noise process distorting an ideal, spherically averaged
data curve. The data bounds determined by Johnson and
Lee are the 99.9% confidence limits on r(p) which both
we and they take to be firm bounds within which + must
lie. P. B. Stark and R. L. Parker (unpublished manuscript.
1986) have developed a method of inverting the
confidence interval data without reinterpreting the inter-
vals as strict bounds. The results of inversion with the
statistical treatment of the bounds, though different in
detail, are surprisingly similar to the results assuming strict
data bounds. In reality, the noise components of the
observations are probably not statistically independen:
because they are principally the result of large-scaic
heterogeneities in the earth and anomalies associated wes
the sources and receivers; the actual statistics of the -
values are largely unknown and almost certainhy e
Gaussian.

The inversions that follow used 100 hasis tanc. e -
the preliminary expansion and an additiond: pa . » 0w
the target velocity  Using 200 did not noticeans 0
the results: the bounds have converged appare :
inversions started al a4 radius of 3480 ke e n
which Johnson and lee corrected ther .
PREM amisotropic carth mondel 10w
1981). We used 4 mumimas: ve oW . R
set about 90 target scioatien oWt
maximize the depth boeo




“Ap-n192 238 mﬁswgﬁgaﬂﬁgzscmﬂw&ﬁﬂm o

UNCLASSIFIED F/G 8/11 o




e
' ‘,
| T
Jizs it nas

$

+ i

1
1{
B
P

£~

EEEE
EEE

ErrrFFFE EEE

1 -

I




— o, e

r—,ﬂ_——-_————ﬁ y -

STARK ET AL: SPHERICAL EARTH SEIsMIC VELoCITY BouNDs 13.897

700

600

T ()

500 - . cAnterpolated asing Mp)
200

500
200
100

0

Vertocal dilay tone

(" noertaanties magnmifud by S50)

100

.

0 004 08 01l
Ray paramdier p (~ k')

Fig. 1. The 7(p) data of Johnson and Lee (1985] replotied. The
ray parameters are the equivalent flat earth values having been
scaled by 180/ and divided by a core radius of 3480 km.

models from an inversion with target velocity
v=200 km s~!. The effect of the flat earth mapping is
seen in the large values of velocity (250 kms™!) and
depth (10,000 km) as radius tends to zero.

We first found bounds on the velocity in the core
assuming that only the flat earth velocity gradient is non-
negative, (i.e., dv/dr < v/r), the identical situation treated
by Johnson and Lee. The solid line in Figure 3 is the LP
solution using all of Johnson and Lee’s [1985] 7 (p) values;
the dashed line is the LP solution excluding the five
values constructed with A(p). The envelopes are deter-
mined by about 180 target velocities. The shaded region
is Johnson and Lee’s NL solution based on all their data.
Though both approaches begin with the same 7 (p;) data,
many more solutions are accessible to the LP technique
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Fig. 2. Two extremal solutions in the equivalent flat earth, one
(solid line) minimizing the depth to a velocity of 200 km 5!, the
other (dashed) maximizing it. Notice the extremely large values
of velocity and depth from the exponential mapping.
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Fig. 3. Velocity bounds calculated without requiring v 1o decrease
with radius. The shaded zone is the solution of Johnson and Lee
[1985} obtained by NL using all 30 data of Figure 1. The solid
line is our LP solution based upon the same data. notice how
much wider the bounds found by LP are. The dashed bounds are
obtained when the five interpolated values indicated in Figure 1
are omitted; the expansion of the bounds shows how crucial these
five data are to the solution near the inner core boundary.

than to NL. For each point on the LP bounds there is a
velocity model that satisfies the measured r (p) data and
contains that velocity-depth point. We conclude that the
NL bounds are narrower than the data require because
they exclude models that satisfy the original finite list of
tv(p) data. The jagged excursions in the LP bounds are
due to the finite size of the data set: between data, where
the constraints on the mod.| are not so demanding, LP is
free to make the depth smaller or greater as asked. One
should note that even if the inner excursions of the LP
bounds were connected, simulating the effect of interpolat-
ing the 7(p) data, the resuiting envelope would still lie
outside the NL bounds. Neither NL nor LP claims that
the bounds themselves are reasonable velocity models, but
rather that, in the absence of additional information, each
velocity-depth point on the bounds is contained in some
velocity model that does satisfy the data. The NL solution
does not exhibit tke same ragged behavior as LP because
the 7 (p) data have been first interpolated to get continu-
ous bounds. It follows from the wide difference between
the results of the two approaches that the NL answer is
sensitive to the precise interpolation procedure employed.
Unfortunately, it is clear that although technically correct,
the LP bounds are too wide to be very interesting. This is
not a fault of LP; on the contrary, it shows that the
present list of 7(p) data is insufficient to bound velocity
very well: if we want tighter bounds, we must either make
additional assumptions or introduce more data with the
same high accuracy.

Johnson and Lee [1985] used A(p) values from the
Tonto Forest Seismological Observatory to construct five
values of r (p) to refine the envelope near the inner core
boundary. The sensitivity of the bounds in that vicinity to
these five 7 (p) data is clear from comparison of the solid
and dashed bounds. There is no need for us to interpolate
to incorporate the additional information since LP can
exploit A(p) data directly. The A(p) data are shown in
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Fig. 4. A(p) data of Johnson and Lee [1985] shown as circles.
The solid curve shows the predictions of the 1066A earth model.
We have assigned uncertainties and adopted values at five ray
parameters for our inversion; the numerical values appear in
Table 1.

Figure 4 as circles, along with the A(p) predictions of
model 1066A [Gilbert and Dziewonski, 1975] and our crude
assessment of errors in the range of p where + was not
available. The error bounds are based upon the variance
of seven A(p) points at about the same p. These conser-
vative values were conferred because so few measure-
ments were available and because the A (p) data, from an
array in central Arizona, are not expected to be completely
representative of the spherically averaged earth, We
adjusted the A (p) values to 3480 km by subtracting the
effects of the crust and mantle of the PREM anisotropic
earth mode! to be consistent with Johnson and Lee; the
reduced data are given in Table 1.

We can tighten the bounds by making the assumption
that dv/dr < 0, as described eatlier and justified thermo-
dynamically in Appendix A. The dashed bounds in Figure
S are determined from the 25 7(p) data, while the solid
bounds include the five A (p) constraints from Figure 4,
the only noticeable difference is in the vicinity of the inner
core boundary. The shaded zone is the region obtained
from all 30 7(p) data of Johnson and Lee [1985). The

TABLE 1. Five Values of A for Rays Passing Near the
Inner Core Boundary

p,sdeg! p,s km! A, deg
1.775 0.02922 119.752
1.830 0.03013 115.003
1.880 0.03095 98.026
1.983 0.03265 109.682
2.033 0.03347 112.670

Each A value is assigned an uncertainty of +16.12
degrees. The values have been reduced to the surface
of the core (radius 3480 km) by subtracting the pred-
ictions of the PREM mantle from the observations
shown in Figure 4.
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Fig. 5. Velocity bounds in the core when v is required to decrease
with increasing radius. The shaded zone is obtained using all
thirty data of Figure 1. The region bounded by dashed lines is
found when the five interpolated data are omitted; that bounded
by the solid lines results from replacing the interpolated = values
by the A values of Figure 4.

solid line represents our preferred solution since we would
rather use the A (p) data directly. Each pair of bounds is
determined by about 180 points. Figure 6 superposes the
bounds from 25 7(p) data with and without the radial
derivative constraint. The power of the radial derivative
constraint is immediately evident: the corridor is extremely
narrow, even in the inner core where the exponential
mapping takes its greatest toll. An important reason con-
straints of this sort are so powerful is that they constrain
the model at each point, whereas data constrain integrals
of pieces of the models.

We would like to require the second radial derivative of
velocity in the core to be nonpositive (Appendix A).
Manipulation of the flat earth mapping (1) shows that
d*v/drt < 0 is equivalent 10 — (dz/dv)? < ad’z/dv?, a non-
linear constraint in this formulation that cannot be
imposed exactly in LP. However, we can use a geometri-
cal argument to rule out some of the corridor allowed by
the first radial derivative constraint. It must be possible to
join any point within bounds incorporating the second
derivative constraint to both ends of the envelope with a
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Fig. 6. A comparison of the velocity bounds with and without the

constraint that v decrease with radius using the 25 r values in Fig-

ure 1 not based upon interpolation.
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Fig. 7. Most restricted solution discussed in this paper, shown by
the large dashes. The velocity must decrease with radius and the
weak form of the constraint that d2v/dr2< 0 has been applied
separately in the outer and inner core. The data comprise 25 7
and five A values. The region contained by the solid lines omits
the constraint on the second derivative of v. The PREM model is
plotted lightly dashed. PREM does not satisfy the = (p) data.

curve that is never concave up as our figures are drawn.
We can therefore exclude anything to the left of line seg-
ments intersecting the lower bound twice. The upper
bound is a bit more complicated: we can exclude anything
separated from the rest of the envelope by a line that
intersects the upper bound twice and the lower bound
once. Figure 7 shows the results of this proscription and
is our most constrained solution based upon r(p) and
A(p) observations. (We have plotted the PREM model
for reference; it lies within the bounds but, as Johnson
and Lee demonstrated, does not satisfy the r(p) data.)
Although the correct bounds incorporating the second
derivative constraint are undoubtedly narrower, the
geometrical consideration allows us to rule out some solu-
tions without solving a nonlinear problem. The same type
of argument applies to the first radial derivative constraint;
it must be possible to join any point in the corridor to
both ends of the envelope with a curve that is everywhere
nonincreasing with radius. Applying this principle to the
bounds based on only the flat earth constraint gives much
wider bounds than does proper use of the radial con-
straint.

CONCLUSIONS

We have presented a theory and an algorithm for
finding the best possible envelope of velocities in a spheri-
cal earth consistent with a finite number of 7 (p) and A (p)
observations whose uncertainties are expressed as strict
intervals. The solution begins by mapping the sphere into
a half-space in which velocity varies only with depth, the
equivalent flat earth problem. This mapping has been
used before, but we show for the first time that maximiz-
ing or minimizing the depth functional in the flat earth
always leads to a corresponding extremum in the spherical
system, even though a nonlinear transformation of sets
has taken place.

We use the linear programming approach of Garmany et
al. [1979} to construct a corridor in the velocity-depth
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plane that contains all models consistent with the data and
the constraint that there are no low-velocity zones in the
flat earth. The original formulation has been improved in
several ways: we have added the ability to include A (p)
data in the manner of Orcutt [1980), and we have shown
how to select a set of basis functions in the numerical
approximation of the problem so that precise bounds are
found with a relatively small number of layers.

The requirement that there be no low-velocity zones in
the flat earth leads to the ad hoc restriction in the spheri-
cal system that dv/dr < v/r. This inequality permits low-
velocity zones of increasing intensity as one approaches
the center of the earth. We show by thermodynamic rea-
soning that P wave velocity in the core should increase
with depth so that dv/dr < 0. The constraint remains
linear when mapped into the flat earth and so may be
readily included in the linear programming formulation.
We also show that it is quite likely that d*v/dr’< 0 in the
core. This condition can not be mapped into a linear con-
dition in the alternative domain and so it has not been
fully exploited; a weak form of the condition can be
enforced without any additional computation.

We have tested the theory with 7 (p) data for the core
prepared by Johnson and Lee [1985] and used by them to
constrain the P-wave velocity profile. Qur technique pro-
duces numerous velocity models that satisfy the finite list
of 7(p) data but lie outside Johnson and Lee’s bounds;
the LP bounds are much wider. The data alone are
insufficient to resolve velocity well, so it is desirable to add
information to the inversion by making additional assump-
tions about the earth. Adding the physical constraint on
the velocity gradient tightens the LP bounds considerably,
bringing them inside the original corridor of Johnson and
Lee. Our results suggest that the P wave velocity can be
determined to an accuracy of better than +0.25 km s™!
almost everywhere in the outer core and +0.1 kms™! in
a large part of the inner core. We can show by the same
kind of geometrical argument used to apply the second
derivative constraint that the inner core boundary must lie
between 1207 and 1242 km if it is a simple discontinuity.

APPENDIX A: PHYSICAL RESTRICTIONS ON THE
VELOCITY IN THE OUTER CORE

It has been accepted that the bulk of the outer core is
very nearly adiabatic and homogeneous since the work of
Birch {1952]. Free oscillation data do not indicate any
significant departures from this state [Masters, 1979] and
so modern earth models tend to build in these properties.
We can constrair: the first and second radial derivatives of
V, (r), the compressional velocity as a function of radius,
if we assume that the outer core is adiabatic and homo-
geneous and core material is "normal" (In this appendix
only we adopt symbols common in geophysical thermo-
dynamics: p is pressure, not ray parameter, V, will be
used for P wave velocity and T for absolute temperature;
we believe this is less confusing than using unfamiliar
symbols for these variables.) By normal we mean that
0Ks/3p)s, the isentropic change in the bulk modulus
with pressure, is about 3—4, and decreases slowly with
isentropic compression. This assumption is supported by
the finite-strain fits to the properties of the outer core
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done by Davies and Dziewonski [1975], who found that
dKs/9p decreases from about 3.6 at the core-mantle
boundary to about 3.45 at the inner core boundary.
Assuming hydrostatic equilibrium,
_ 1]
s.C

17 S [aKs

ar Js¢c 2V, | 9p
where the subscripts S,C denote constant entropy and
composition and g is the acceleration due to gravity.
Since ex hypothesi @Ks/dp)sc 2 1. we find immediately
that the first radial derivative of V, is negative. This
would be the first result we need if the core had an adia-
batic temperature gradient and uniform composition; we
examine the effects of departures from these conditions
shortly.

Differentiating (A1) gives

(AD)

V| _|a¥| (1de_ 1(3V
8rt s 8r Jsclg dr Vol 97 )sc
pg | 8°Ks
+ A TS (A2)

Gravitational acceleration g (r) is relatively insensitive to
details of the density distribution within the earth and is
very well determined. The derivative dg/dr is almost cer-
tainly positive in the outer core so the first term on the
right side of (A2) is negative. The second term is much
smaller than the first because @Ks/9p)s is relatively
insensitive to p but is negative if the material is normal.
Thus the second radial derivative of V, is also negative
given these assumptions.

How sensitive are these constraints to the assumption
that the temperature gradient is adiabatic? It is extremely
unlikely that the outer core can be significantly superadia-
batic as the resulting convective instability would relieve
the condition through convection [Masters, 1979] resulting
in an adiabatic interior with thin (seismically unobserv-
able) boundary layers. To examine the effect of a subadi-
abatic gradient, we write the temperature gradient in the
following form:

ar _ |81 _
ar |6r ]S.(‘(l ) (A3)
where f is a function of radius. In the isothermal case
S =1 and since we have ruled out super-adiabatic gra-
dients, 0< f £ 1. The adiabatic temperature gradient is
given by

(A4)

37| _ -gTy _ —gla
or |5 v} G

where y is Gruneisen’s ratio, a is the coefficient of ther-
mal expansion and C, is the specific heat. With these
relations and the assumption of homogeneity one may
show

v, |av Ty [aV
Rl Ny a4 3 £y 127
el e v [ar (A3)

The temperature dependence of ¥, is unknown but may
be estimated using the parameter §, introduced by Ander-
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son [1967]. Like 8Ks/0p)s.c. 8 is relatively insensitive
to pressure and temperature. In a fluid, 8, can be written

2 |3V,
o7

oV,
We conclude that 8,21 as @V,/8T), is negative in
almost all materials. In fact, experimenis usually show
that 8, = @Ks/9p)sc so it is reasonable to suppose that
1< 3§, €4 in the outer core. Using (A1), (AS) can be
written

8, =1~

p.C

av, |av, [ ] ,
ar ar |, o l+aTyfX (A6)
where
P -1
[axs —1
ap )sc

i.e., both f/ and X probably lie between zero and one.
Equation (A6) says that dV,/dr will be slightly more nega-
tive in a subadiabatic region. Reasonable estimates of
a.T, and y le.g., Stacey, 1977] suggest that o Ty is about
0.05 in the outer core, so the velocity gradient would be
changed by about 5% in an isothermal region.
Differentiating (A6) with respect to radius yields

av,
or

v,

v,
dr? 2

ar

d
1+aT + —(aTyfX)
s.('[ “ va] ]s ar 1Y

(A7)

The first term on the right of (A/) is negative, but the
second term could cancel it, giving a nonnegative value of
d'V,/dr?, we can show that this is unlikely.

The only difficuity is the unknown radial variation of /.
The radial variation of aTyX is dominated by the
behavior of a, a rapidly decreasing function of pressure.
Therefore d (a Ty X)/dr is positive. Equation (A7) shows
that if £ is constant or df/dr is positive (i.e., the core is
increasingly stable at larger radius), the second radial
derivative of V, remains negative. It may only become
nonnegative if df/dr is large and negative: d*V,/dri=0

when
s.C

For this to occur the core must go from an adiabatic state
1o an isothermal state in a radial distance of about 100 km.

In summary, subadiabatic temperature gradients cause
the velocity gradient to steepen slightly (becoming more
negative) and leave the second radial derivative of velocity
negative provided the core is uniformly stable or becomes
more stable toward the core-mantle boundary. The
second radia! derivative could become nonnegative if the
core becomes stable within a very small range of radius as
one approaches the inner core boundary, but we consider
this case unlikely.

9Ky
ap

o 2 [1a, &
dr aTyX|g dr 2V}

=10 m!
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What is the effect of variations in the composition? We
make the usual assumption that the outer core is predom-
inantly molten iron with small amounts of light impurities.
This model is based partly on shock wave experiments
which indicate that the outer core is about 10% less dense
than pure iron [e.g., Jeanloz, 1979]. The same experi-
ments show that the bulk sound speeds (which equal ¥,
in a fluid) of the outer core and of iron at core pressures
are virtually indistinguishable. It seems that the effect of
impurities is to lower K5 as much as they lower the den-
sity, resulting in little effect on the velocity. In this case,
reasonable radial variations in the composition of the
outer core would not affect the negativity of the first and
second radial desivatives of velocity. One can use the
analysis of Jeanfoz {1979} to estimate (3 V,/8c)r p, where
¢ is the concentration of light impurities, and to make an
analogous argument to the one for thermal variations
given above. The results are similar, and we conclude that
the constraints on the radial derivatives are unlikely to be
violated for reasonable chemical or thermal departures
from the adiabatic and homogeneous state.

APPENDIX B:
EQUIVALENCE OF TWO OPTIMIZATION PROBLEMS

It is not difficult to show that the extrema of z (v) occur
for the same models dz/dv as the extrema of r (v). We do
this by showing that the variations of r (v) and z (v) differ
by a multiplicative constant, so that the perturbations to
dz/dv one should make to improve the values of the
penalty functionals have the same direction. Since the
tinear programming sofution for z(v) is optimal, that is
the functional derivative projected onto a given direction
either vanishes or leads outside the constraint set, r(v)
can not be improved locally without leaving the region of
dz{/dv that fit the data. We write r as a functional of
(= dz/dv:

r[g] =g =2 kb
where

P

Z [{]Ef;dv with v=vritVa

LetA=Z [(+6]-Z. [{]. Then

RIS e 7l

ric+8l=rlt] = ate )

=ai(a)

n=0

(Z gl+a)r - Z ki

S = Wzl +nZ ) ' - Z k)
n=0
- 2 ("ﬂ) Z [c]n |
-3¢ "2 _ArtYa (B1)
for Al << |Z [t]]. Now,
srlonya vilklba
A= f (+8) dv - ¢ dv

[ "

A— -
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vrlgl/a vrig+sl/a vrig+bl/a
f §dv+ f ¢ dv + f S dv
W vrigl/a vrigVa

Using (B1) and the definition of v,

vil—-4a/a) vil-a/a)

{dv+ f

The third term is second order in §, and the second term
may be approximated by —{(v)A/a for [ sufficiently
smooth and A/a sufficiently small. Note that for the
finite-dimensional realization of the problem that we
solve, this requires that the perturbation be sufficiently
small not to cause the upper limit of integration to move
into the support of a different basis function, or that the
coefficients of the two match to give a continuous transi-
tion. To first order,

A%dev+

Aszdv—((v)A/a

If we solve for A and substitute the result into equation
(B1), we find that

;’K_}_f(gd‘

rig+8]l - rligl = L)

However,

Z lt+8} - 2, I§l=f 5 dv
SO We may write

rlg+8] - rigl ~ %’;ﬁ(]— (2. lg+81- Z. )

The negative sign is expected since maximizing the depth
minimizes the radius. This shows that any extremum of
Z, over the set of { satisfying the constraints is also an
extremum of r. We must still show that r does not
achieve a "better” value for any other  satisfying the con-
straints,

The functional r [¢] is convex since it is the composition
of two convex mappings: a linear mapping (Z, [[]) and an
exponential. The set of models { (v) that satisfy the data
and the radial derivative constraint, if it is used, is convex
because it is described by linear inequalities. The familiar
theorem concerning the extrema of convex functionals
over convex sets applies: the value achieved at a local
extremum of r[{] satisfying the data is the global extremal
value with respect to the set of feasible solutions. We are
therefore justified in solving the problem by finding the
extrema of z(v) and mapping the resulting values into
values of r (v).

Acknowledgments. This work was supported by National Science
Foundation Grants EAR-84-03847 and EAR-84-18471, and by the
Office of Naval Research Contract N00014-85-C-0140.

REFERENCES
Aki, K., and P. G. Richards, Quantitative Seismology: Theory and
Methods. W. H. Freeman, San Fransisco, Calif., 1980.

Anderson, Q. L., Equation for thermal expansivity in planetary
interiors, J. Geophys. Res., 72, 3661— 3668, 1967.



13,902

Bessonova, E. N., V. M. Fishman, V. Z. Ryaboyi, and G. A. Sitni-
kova. The tau method for inversion of travel times, I, Deep
seismic sounding data, Geophys. J. R. Astron. Soc., 36, 377398,
1974.

Bessonova, E. N., V. M. Fishman, M. G. Shnirman, G. A. Sitni-
kova, and L. R. Johnson, The tau method for inversion of
travel times, 1, Earthquake data, Geophys. J. R. Astron. Soc.,
46. 87108, 1976.

Birch, F., Elasticity and constitution of the earth’s interior, J. Geo-
phys. Res., 57, 227286, 1952.

Davies, G. F., and A. M. Dziewonski, Homogeneity and the con-
stitution of the Earth’s lower mantle and outer core, Phys. Earth
Planet. Inter., 10, 336343, 1975.

Dziewonski, A. M., and D. L. Anderson, Preliminary reference
Earth model, Phys. Earth Planet. Inter., 25, 297—356, 1981.

Garmany, J., J. A. Orcutt, and R. L. Parker, Travel time inver-
sion: A geometrical approach, J. Geophys. Res., 84, 36153622,
1979.

Gerver, M., and V. Markushevitch, Determination of a seismic
wave velocity from the travel-time curve, Geophys. J. R. Astron.
Soc., 11, 165-173, 1966.

Gilbert, F., and A. M. Dziewonski, An application of normal
mode theory to the retrieval of structural parameters and source
mechanisms from seismic spectra, Philos. Trans. R. Soc. London,
278, 187-269, 1975.

Jeanloz, R., Properties of iron at high pressures and the state of
the core, J. Geophys. Res., 84, 6059—6069, 1979.

STARK ET AL.: SPHERICAL EARTH SEISMIC VELOCITY BOUNDS

Johnson, L. R, and R. C. Lee, Extremal bounds on the P velo-
city in the earth’s core, Bull. Seismol. Soc. Am., 75, 115130,
1985.

Luenberger, D. G., Introduction to Linear and Nonlinear Program-
ming, Addison-Wesley, Reading, Mass., 1973.

Masters, G., Observational constraints on the chemical and ther-
mal structure of the earth’s deep interior, Geophys. J. R. Astron.
Soc., 57, 507-534, 1979,

Orcutt, J. A, Joint linear, extrema! inversion of seismic kinematic
data, J. Geophys. Res., 85, 26492660, 1980.

Stacey, F. D., A thermal model of the earth, Phys. Earth Planet.
Inter., 15, 341348, 1977,

Wiggins, R. A., G. A. McMechan, and M. N. Toksoz. Range of
earth structure nonuniqueness implied by body wave observa-
tions, Rev. Geophys., 11, 87~113, 1973.

G. Masters, J. A. Orcutt, R. L. Parker, and P. B. Stark. Insti-
tute of Geophysics and Planetary Physics, Scripps Institution of
Oceanography, University of California, San Diego, La Jolla, CA
92093.

(Received January 17, 1986,
revised May 5, 1986;
accepted August 6, 1986.)



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REFGRT NUMBER 7 GOVT ACCESSION NOJ| 3 RECIPIENT'S CATALOG NUMBER
|
4 TITLE ‘and Subtitie) 5. TYRE OF REPORT & PERIOD COVERED

Strict Bounds on Seismic Velocity in the
Spherical Earth

6. PERFORMING ORG. REPORT NUMBER

7 AUTHOR/S, 8. CONTRACT OR GRANT NUMBER(s)

Philip B. Stark, Robert L. Parker, G. Masters, _QE_r.
and John A, Orcutt N00014-85-C-0140

S PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

Scripps Inctitution of Oceanography
La Jolla, California 92093

11, CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT DATE

Office of Naval Research - December 10, 1986

Arlington, Virginia 22217 12 3%:95“°”‘555

4. MONITORING AGENCY NAME & ADDRESSrif different from Controlling Oftice) 15. SECURITY CLASS. (of this report)

unclassified

1Sa. DECL ASSIFICATION DOWNGRADING
SCHEODOULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i di{ferent from Report)

I8 SUPPLEMENTARY NOTES

Reprint from Journal of Geophysical Research, Vol. 91, No. Bl4, 13,892-13,902,
(1986)

13. KEY WORDS rContinue on reverae side if necessary and identify by block number)

20 ABSTRACT rContinue on reverse side if necessary and identity by block numbey)

We address the inverse problem of finding the smallest envelope containing
all velocity profiles consistent with a finite set of imprecise t(p) data from
a spherical earth. Traditionally, the problem has been attacked after mapping
the data relations into relations on an equivalent flat earth. Of the two con-
temporary direct methods for finding bounds on velocities in the flat earth con-
sistent with uncertain t(p) data, a nonlinear (NL) approach descended from the
Herglotz-Wiechert inversion and a linear programming (LP) approach, only NL has
been used to solve the spherical earth problem. 0On the basis of the fipite:

FORM
DD ' Jgu 73 1473 EDITION OF | NOV 85 1S OBSOLETE L
S/N 0102 LF 014 6601 ynclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Deata Bntered)




JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 92, NO. B3, PAGES 2713 2719, MARCH 10, 1987

Velocity Bounds from Statistical Estimates of 7 (p) and X (p)

PHILIP B. STARK AND ROBERT L. PARKER

Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego

We present a new technique for constructing the narrowest corridor containing all velocity
profiles consistent with a finite collection of 7 (p) data and their statistical uncertainties. Earlier
methods for constructing such bounds treat the confidence interval for each r datum as a strict
interval within which the true value might lie with equal probability, but this interpretation is
incompatible with the estimation procedure used on the original travel time observations. The new
approach, based upon quadratic programming (QP), shares the advantages of the iinear program-
ming (LP) solution: it can invert r (p) and X {(p) data concurrently; it permits the incorporation of
constraints on the radial derivative of velocity for spherical earth models; and theoretical resulis
about convergence and optimality can be obtained for the method. We compare P velocity bounds
for the core obtained by QP and LP. The models produced by LP predict data values at the ends
of the confidence intervals; these values are unlikely according to the proper statistical distribution
of errors. For this reason the LP velocity bounds can be wider than those given by QP, which
takes better account of the statistics. Sometimes, however, the LP bounds are more restriclive
because LP never permits the predictions of the models to lie outside the confidence intervals even
though occasional excursions are expected. The QP bounds grow narrower at lower levels of
confidence, but the corridors at 95% and 99.9% are virtually indistinguishable: The data must be

improved substantially to make a significant change in the velocity bounds.

INTRODUCTION

This paper is a sequel 10 Stark et al. [1986], (hereinafter
called SPMQ); we assume the reader is familiar with their
notation and results. Both papers address the nonlinear
inverse problem of ray theoretic seismology on a one-
dimensional earth. The earliest approach to the problem,
that of Wiechert and Herglotz in the 1900s [4ki and
Richards, 1980], assumes that an exact travel time curve is
available and that the earth does not contain strong low-
velocity zones (regions where dv (r)/dr > v/r, where v is
seismic velocity as a function of r, radius). With these
assumptions, there is a unique velocity model correspond-
ing to the data. Once stronger low-velocity zones are per-
mitted, many models may satisfy the data [for example,
see Gerver and Markushevich, 1966). Even without strong
low-velocity zones, usually infinitely many earth models
satisfy the available discrete imprecise travel time observa-
tions, which do not constitute exact travel time curves.
The nonuniqueness introduced by the finite number of
data and their contamination by errors is traditionally
addressed by trying to delimit the range of models that fit
the data adequately.

For reasons stated by SPMOQ, it is convenient to work
with 7(p), the vertical delay time 1s a function of ray
parameter, rather than T(X), travel time as a function of
epicentral distance. Bessonova et al. [1976) introduced a
method of estimating sample means of 7 and their stand-
ard deviations at discrete values of p, assuming that the
noise contaminating the travel time observations is ran-
dom and uncorrelated and has zero mean. On these
assumptions the sample mean is approximately Student ¢
distributed when p changes very little over the bands of X
used in the estimation of r. The assumption of independ-
ent zero-mean random noise is probably not valid for a

Copyright 1987 by the American Geophysical Union.
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variety of reasons: Travel times are biased by near-source
and near-receiver anomalies and by large-scale hetero-
geneities within the earth: picking errors are likely to be
systematic, and at some point the assumptions of ray
theory break down. All these factors tend to correlate
travel time measurement errors, some tend to bias the
measurements, and without more information one should
hesitate to assert that the errors are truly Gaussian. How-
ever, the approximation is increasingly reasonable when
there are many observations with wide geographic distribu-
tion and it enables one to make progress on the problem.

The nonlinear inversion scheme of Bessonova er al.
[1976] and the linear programming (LP) method of Gar-
many et al. [1979), discussed at length by SPMO, take
confidence intervals derived from the means and standard
deviations as strict limits within which 7 must lie. Dorman
and Jacobson [1981}] objected that velocity bounds based
on this reinterpretation of the statistical data will be
erroneous. Some fraction of the time the confidence
intervals will not include the 7 (p) values of the real earth;
the strict reinterpretation does not altlow for this, and so
the resulting envelope of models may be too narrow. On
the other hand, the models that determine points on the
velocity-depth bounds tend to predict values of 7 (p) that
lie at the ends of most of the confidence intervals. Since
there is really a probability distribution of values within
the confidence ir.lervals and the values at the ends are less
likely to come from the earth, a model that predicts 7 (p)
values consistently at the ends is extremely unlikely to
represent the earth and the envelope may well be too
wide.

We shall show that it is not necessary to reinterpret the
statistical estimates as strict limits on 7: We propose a
method, dubbed QP (for quadratic programming), that
finds velocity-depth bounds from estimates of the mean
values of 7(p) and X (p) at various p and their standard
deviations. QP retains the advantages of LP: interpolation
of the data is not necessary, multivalued velocity models
are automatically excluded from the inversion, X (p) data
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can be used concurrently with 7 (p), and the radial deriva-
tive of velocity can be constrained. We show below that
the proof of the equivalence of the spherical and flat earth
inverse problems given by SPMO also applies to the
inverse problems from statistical data.

For convenience we shall work in the flat earth, follow-
ing SPMO as closely as possible in our notation. In the
application to the earth’s core using the 7 (p) data of John-
son and Lee [1985], we use the basis functions (pieces of
1/v) and the radial derivative constraints proposed by
SPMO.

THE QP METHOD

The problems of calculating r{p) and X (p) are non-
lirear with the customary representation of the earth by
v(z), velocity as a function of depth. However, Garmany
et al. [1979] noted that 7 (p) and X (p) are linear function-
als of a one-dimensional flat earth model expressed as the
derivative of depth with respect to velocity, dz/dv, which
we call{ = {(v):

Ve,

TI[C]E T(p1)= 2 f ("’2_p:2)”:§(v) dV

lip,

xi=xe)=2 [ 5 1= pr g av

where w is the surface velocity. The depth to a fixed tar-
get velocity v, is also a linear functional of the unknown
earth model {:

Z,’[gl =:z(y) = f L(w)dv

Let y denote the reciprocal of the smallest p, in the data
set. Then y is the largest velocity about which the data
give us any information, so we will take { (v} to be defined
on the interval [w,y]. We must insist that {(v) > 0 to
ensure { corresponds to a single-valued velocity model
v(z). We may exclude flat earth profiles that correspond
to spherical earth profiles with low-velocity zones by
requiring { (v) € a/v, where a is the radius of the spheri-
cal earth. SPMO derive this expression for the constraint
and justify its use in inversions for core structure.

Our data are sample means d and their standard devia-
tions o, of 7(p) for i=1,...,n, and of X(p,) for

i=n+1,..,n. The measure of misfit to the data we
shall use is
<ld--k1)". ¢ [2-x@)
= 2]+ —_
“k] E ag, :-%*I ag,

We will say that a model {(v) fits the data adequateiy if
wlt] € M?, where M? is some chosen tolerance. We can
estimate the probability that the actual 7(p) and X (p)
predictions of the real earth fit the sample means within
M?. Let us assume following Bessonova et al. [1976] that
errors in the travel times are independent and normally
distributed and have zero mean; then the sample means
are approximately Student t distributed. We will assume
further that the estimates of d have a large number of
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degrees of freedom and that we have more than a few
data (n >> 1). Then the weighted misfit of the real
earth’s predictions to the sample means is approximately
x: distributed (chi-square with n degrees of freedom).
With M? equal to the |—a percentage point of the x? dis-
tribution, the requirement that ul{] < M? limits our
search to a set of models whose predictions include those
of the real earth at the 1—a confidence level. We shall see
later that the precise value of M? makes very little
difference in the bounds we find.

The problem of finding velocity bounds is nonlinear for
a host of reasons: First, a nonlinear transformation from
the spherical to the flat earth has taken place; second, the
data mappings as usually written are nonlinear; third, the
measure of misfit to the data is quadratic; and finally,
linear inequality constraints are required to ensure that the
models are physically reasonable and that the radial
derivative constraint is not violated. In general, problems
of this kind are not soluble. Here, we show how a finite-
dimensional approximation to the problem can be solved
and give a numerically stable algorithm to solve it; P. B.
Stark (Rigorous velocity bounds from soft 7 (p) and X (p)
data, submitted to Geophysical Journal of the Royal Astro-
nomical Society, 1986 (hereinafier referred to as Stark

(1986)) has demonstrated rigorously that the finite-
dimensional approximation converges to the optimal
result.

Denote by U the set of flat earth models { = {(v) that
satisfy u [£] < M?, the positivity constraint {(v) > 0 that
ensures that the models are physically realizable and, if we
choose to impose it, the radial derivative constraint
{(v) € a/v. We construct velocity bounds by finding the
maximum and minimum depths at which a target velocity
v, can occur among the models in U. We repeat the pro-
cedure with different target velocities until we have a good
description of the envelope of acceptable models. This is
the same approach used by LP and described by SPMO.
The misfit functional w [Z] is a positive semidefinite qua-
dratic form and thus u[¢] < M? defines a convex set of
models {. (This does not mean that any particular model
{(v) is a convex function: the set of models satisfying the
constraint is a convex set in the space of models from
which ¢ is drawn. See Luenberger [1969] about convex
sets of functions.) The positivity constraint {(v) > 0 and
the radial derivative constraint {{v) < a/v are both linear
inequality constraints; hence they too describe convex
sets. U, the intersection of these three sets (the set of
models that fit the data adequately, represent single-valued
velocity models and have a nonpositive radial derivative in
the spherical earth) is also a convex set. The depth to the
target velocity v, Z, [¢], is a linear functional of the
model {; linear functionals are convex. Our task is to find
the extrema of the convex functional Z, [{] over the con-
vex set of models U. The familiar theorem that local
extrema achieve the global extremal values applies and we
conclude that the minimum and maximum depths are
unique.

We now know enough to establish the equivalence of
the spherical and flat earth inverse problems using statisti-
cal data. SPMO proved the equivalence for the strict data
problem; their proof relies upon the first-order
equivalence of the functional derivatives of radius and
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TABLE 1. X (p) Data Used in Some of the Inversions, Abstracted
From the X (p) Observations of Johnson and Lee [1985]

p.skm! X, km a,. km a; km
0.02922 12734 380.216 268.8
0.03013 6985.0 380.216 2198
0.03095 59539 380.216 1437
0.03265 6661.8 380.216 2195
0.03347 6843.3 380.216 190.1

See Figure 2. The values of ray parameter are given as the flat
earth values reduced to the surface of the core (3480 km). The
X (p) sample means, labeled X, are values reduced to the surface
of the core by subtracting the predictions of the PREM anisotropic
earth model [Dziewonski and Anderson, 1981]. The standard devia-
tions o, are referred 1o in the text as the weaker X (p) constraints,
o, are the tighter X (p) data. The values of o, correspond to the
confidence intervals for X (p) used by Stark et al. [1986].

depth with respect 1o { and upon the convexity of the set
of solutions that satisfy the strict data, the positivity con-
straint, and the radial derivative constraint. The depth
functional Z‘.I [£] and the radius functional are the same

for the statistical data problem as for the strict data prob-
lem because we are using the same representation of the
earth, { (v) = dz/dv. We have just seen that the set U of
models that satisfy the statistical data within M? and the
positivity and radial derivative constraints is convex, so
the proof given by SPMO applies to this problem as well.

How may we find the minimum and maximum depths
to v,? A slightly different perspective makes the job fairly
straightforward, although it is rather expensive computa-
tionally. We shall look at the models that fit the data best
subject to the additional linear constraint that they reach a
certain depth at the target velocity v,: The penalty func-
tional will be the misfit to the data, not the depth to the
target velocity. All the constraints are then linear and the
only nonlinearity is in the new penality functional, which is
quadratic in the unknown model {.

Consider the earth model (*(v), where
0< {*(v) € a/v. that has the smallest u[{]. the
weighted misfit to the data means ¢7, If we approximate
the problem in finite dimensions by writing { as a linear
combination of a finite set of basis functions, then an
approximation 1o {* can be found by quadratic program-
ming with linear inequality constraints. Stark (1986)
proves that for any reasonable choice of basis functions,
the results obtained by increasing the number of basis
functions used in the finite-dimensional approximation
converge 1o the correct answer for the infinite-dimensional
problem. The inverse problem is consistent using that set
of basis functions provided u [{*] < M2 The best fitting
finite-dimensional model ({* associates the depth
*=2Z [£*] with the target velocity v,. Provided the prob-

lem is consistent, z* is an upper bound on the least depth
to v, and a lower bound on the greatest depth to v,.

We prove in Appendix A that if we add the linear con-
siraint that the model reach a greater depth than z* at v, ,
the best fitting model that we can then find will have a
larger misfit x[{). If we make the model attain a still
greater depth, the misfit will continue to grow. The same
thing happens if we require the model to have smaller and
smaller depths than z*. Since the constraint that the
model arrive at a certain depth at v, is linear (Z, L] is a

2718

linear functional), finding the best fitting model that
satisfies the positivity and radial derivative constraints and
that achieves a certain depth at v, is another quadratic pro-
gramming problem with linear inequality constraints.

The statistical data problem thus can be solved with a
single-parameter search: starting with z*, the depth to v,
achieved by the overall best fitting model, we add the con-
straint that the model attain a slightly larger depth and
find the best fitting model, we continue increasing the
depth until the best fitting model subject to the constraint
has a misfit larger than M?. The depth at which M? is first
exceeded is the maximum depth to v, in that discretiza-
tion. Similarly, by decreasing the depth until M? is
passed, we may find the least depth to v, in the discretiza-
tion. The monotonicity of the musfit with changes in the
depth constraint lets us stop the search as soon as M? is
overrun: the misfit will not fall again.

APPLICATION TO THE EARTH'S CORE

We implemented QP as described in Appendix B on the
National Science Foundation San Diego Supercomputer
Center Cray X-MP/48. The computational requirements
of the algorithm are fairly heavy: each set of bounds
presented required about 30 minutes of central processor
time. The inversions that follow use the means and
standard deviations of the 25 uninterpolated r(p) data
tabulated by Johnson and Lee [1985). All our inversions
employ the radial derivative constraints and 1/v basis
functions advocated by SPMO. SPMO used an extra pair
of basis functions bracketing the target velocity to enhance
the numerical efficiency of LP (Stark (1986) provides a
theoretical explanation of this effect); we have followed
their practise. We used 100 basis functions in the prelim-
inary expansion and started the inversions at a radius of
3480 km with a minimum surface velocity w=7 kms!,
as they did. The smallest number of degrees of freedom
in the 7(p) estimates is 115, and many estimates were
derived from thousands of observations, so approximating
the distributions of the sample means by Gaussians is rea-
sonable. The approximation is improved further by the
summation over the 25 data. The five X (p) means and
uncertainties that we use to refine the structure near the
inner core boundary in some of the inversions that follow
are tabulated in Table 1. We somewhat arbitrarily ascribed
two sets of uncertainties to the X (p) observations of John-
son and Lee [1985] because the data, from an array study
in central Arizona, are relatively few in number and may
not be very representative of the spherically averaged
earth.

When we refer to statistical bounds at the 99.9% or 95%
confidence level, we mean that we have set M? equal to
the appropriate percentage point of the x? distribution.
Equating n with the number of data is appropriate because
we are not estimating a model, nor indeed reducing the
number of degrees of freedom at all; we are estimating a
bound on a property of the set of models satisfying the
data and additional constraints. We used values of x}
from Abramowitz and Stegun [1965]; they range {rom about
37 to about 60 for 25 and 30 degrees of freedom. A
glance at Figure 1, a representative plot of the minimum
misfit to the data as a function of the depth that the model
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Fig. 1. Representative plot of x? versus depth the model is con-
strained to achieve, from the inversion of the 25 7 (p) data with
target velocity v,=18 km ~!. The minimum misfit of 08611
occurs at 2049 km.

is made to attain, shows that the misfit passes rapidly
through that span with only a slight change in depth so we
do not expect the bounds at those confidence levels 10 be
very different. As we proved, the smallest misfit is mono-
tonic in the depth that the model is constrained to reach.
The best fitting model {*(v) has a misfit of about 0.86 and
reaches a depth of 2049 km at the flat earth velocity 18
km s°!; it is, however, built unattractively from steps in
the spherical earth velocity. [t is usually true that models
with the smallest misfit to the data are disenchantingly
rough. A common alternative to finding bounds on the
set of models that satisfy the data, as we do here. is to
seek the smoothest model that fits the observations ade-
quately (see Constable et al. [1987], for example). Either
approach discourages us from attaching too much
significance to accidental properties of a particular model.
Figure 2 compares QP and LP bounds based on the 25
data for r(p) alone. The dotted bounds are those
obtained by SPMO using LP with radial derivative con-
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straints. The solid lines are QP bounds at the 99.9%
confidence level (M?= 52.6) and, as we might have
predicted from the steep misfit functional, they are indis-
tinguishable from the QP bounds at the 95% confidence
level (M?= 37.7) in a diagram of this small size. The
similarity of these bounds supports our use of the approxi-
mation that the individual data errors sum to a x;? distri-
bution since the results are not sensitive to the precise
tolerance M? we choose. In places the QP bounds lie out-
side the LP bounds because QP ailows the misfit to occur
in the most advantageous place while LP limits the misfit
at each p independently. In other places the LP bounds
are outside; this is because the models produced by LP
tend to have data predictions along the ends of the
confidence intervals. QP will not permit this since such
predictions are jointly extremely improbable. As an
interesting note, geometrical constructions of the kind
SPMO used with the strict LP bounds can not be applied
to the statistical bounds: there is no reason to expect the
bounds themselves to meet the same physical constraints
as the models in the statistical problem. In the strict prob-
lem one knows that bounds using the radial derivative
constraint themselves satisfy the radial derivative con-
straint; here that is clearly false. The slight narrowing
within the inner core where the bounds violate the radial
derivative constraint is due to the presence of a datum
with particularly small standard deviation.

We have used the five looser X (p) data of Table | to
try to reduce the width of the envelope near the inner core
boundary. Figure 3 compares the results at the 99.9%
confidence level (M? = 59.7, solid line) with the LP solu-
tion (dashes) using the strict bounds on X (p) given by
SPMO. The QP results using the five weaker X (p) con-
straints are essentially identical to the results in Figure 2
using only the 25 7(p) data. The five weaker X (p) con-
straints make a significant difference to the strict LP
bounds near the inner core, but they are too loose to
affect the QP results. We assigned more optimistic esti-
mates of the standard deviations of the X (p) observations
(Table 1) to improve the bounds and inverted again. Fig-

3000
2500
2000
1500
1000}

500

T T L4

Radius (km)

0 1 ) W I}

8.0 9.0

10.0 11.0 12.0

Velocity (km s71)

Fig. 2. Bounds based on the 25 7(p) data. The solid lines are the statistical bounds at the 95%
confidence level, the bounds at the 99.9% confidence level are indistinguishable at this scale. The
dotted lines are the strict bounds obtained by SPMO from the 99.9% confidence intervals of John-
son and Lee [1985]. The two statistical bounds are so similar because y? changes so abruptly with
depth (Figure 1). Also note that while the models are constrained to be monotonic. the statistical
bounds need not be monotonic although the strict bounds must.
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Fig. 3. Statistical bounds at the 99.9% confidence level using the 25 r(p) data alone and using in
addition the five loose X (p) estimates from SPMO using Johnson and Lee's [1985] data. On this

scale the results are not distinguishable: both are represented by the solid lines

The dashed

bounds are the strict bounds from SPMO using both the = (p) and X (p) data. The errors assigned
to the estimates of X (p) are too large to change the statistical bounds, although they have a
significant effect on the strict bounds near the inner core boundary.

ure 4 plots the results at the 95% confidence level
(M- = 43.8, dashes). Thc solid lines represent both the
results from the 25 7(p) data alone and using the weak
X(p) constraints. The tighter X(p) data narrow the
bounds particularly near the inner core boundary but also
generally throughout the core. We tried to invert the
corresponding strict data bounds with LP, but the revised
data were inconsistent even using 200 basis functions;
doubtless this is why they have a strong effect on the QP
inversion. (This illustrates, however, that QP is less sen-
sitive than LP to the estimation of data errors.) The
smaller X (p) error estimates are probably too optimistic
especially with reference to spherically averaged earth
structure, we therefore prefer the velocity bounds based
on the 25 7 (p) and five weaker X (p) data (solid lines).
The dotted line in the middle of the bounds is the

PREM model of Driewonski and Anderson  [1981].
Although PREM lies inside the corridor. its weighted
misfit to the sample means of the 25 r{(r) data 1s
immense. This demonstrates that an arbitrary model
within the corridor will not necessarily fit the data. Every
velocity-depth point on or within the bounds is consistent
with the data: each is contained in some model that fits
the data. However, many models in the corridor are
invalid. Within the finite-dimensional approximation, the
data rule out every point outside the corridor; as the
approximation improves, the bounds move slightly out-
ward. We tried unsuccessfully to bring the predictions of
PREM into agreement with a x” measure of misfit to the
data at the 99.9% level with a baseline shift: there is stifl
some inconsistency between short- and long-period

seismic data.

3500 |
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o L i L
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10.0 120
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Fig. 4. Statistical bounds at the 95% confidence level. The solid lines are the pair of bounds found
using the r{p) data alone and using the five weaker X (p) constraints, as in Figure 2. The dashed
bounds use instead the five tighter X (p) estimates in Table 1. Note the profound effect near the
inner core boundary and the slight general narrowing. In contrast. changes to the X (p) data affect
the strict bounds only near the inner core boundary. The PREM earth model (Dziewonski and
Anderson, 1981) appears as the dotted line for reference. PREM does not satisfy the r (p) data,

even at the 99.9% confidence level
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DisCcUSSION

The QP method allows statistical estimates of r (p) to be
used in a manner that is more consistent with their deriva-
tion than the previous methods of Bessonova et al. [1976)
and Garmany et al. [1979]). On the basis of 25 core 7(p)
data from Johnson and Lee [1985], QP inversions at the
99.9 and 95% confidence levels find a corridor of velocity
models about 0.25 km s} wide and limit the location of
the inner core boundary to approximately 1227—1290 km.
The velocity jump at the inner core boundary is about
04—08 kms™!. QP is less sensitive than LP to the esti-
mation of data errors. In places the QP bounds are wider
than the corresponding linear programming bounds; in
places they are tighter. Overall there is not much
difference. This does not indicate that LP and QP will
always give comparable results: The nonlinearity of the
problem prevents one from predicting what would happen
with different data.

While QP brings us closer than any previous method to
a completely consistent use of the scattered travel time
observations that are available, several steps remain. The
sample means of 7{p) are found by averaging over small
bands of X {Bessonova er al., 1976]. through the unknown
X (p) function this corresponds to a weighted average in
p. The averaging should be incorporated into the inver-
sion process: We ought to require that models predict
acceptable average values of r(p) over appropriate bands
of p. The present method of estimating 7(p) will not
allow this: it seems likely that another method could be
devised whose averaging in p is more easily quantified.
The current estimation procedure also requires that the
errors in the travel time observations have zero mean and
be independent and normally distributed. It might be pos-
sible with a great deal more data to estimate the true error
distribution of our measurements, but this probably could
not be done independently of a reference model. which
begs the question.

APPENDIX A: QUASI-CONVEXITY OF u

Here we prove that as the depth to v, is constrained to
be further and further from :*, the depth achieved by the
model ¢* that minimizes the misfit x ). the misfit
increases monotonically. This is equivalent to showing
that the function of ¢ defined by finding the minimum of
wlt) among the models ¢ satisfying the positivity and
radial derivative constraints and the constraint that
Z‘IIZ;] = z. is a quasi-convex functional of = (see Bazaraa

and Shetty [1979]. about quasi-convexity). Let P denote
the convex set of models that satisfy the positivity and
radial derivative constraints. Define §° 1o be the subset of
models in P that reach the depth - at velocity v,. that is
the elements of P that satisfy the additional constraint
that Z‘{[§] =:. § is obviously convex. By definition

{* € §°. Let {' be a model that minimizes the convex
functional u [{] over the convex set 5 We will derive a
contradiction from the assumption that there is a model
[P € 5% such that wlt?) < wlg']. where z' is between =*
and %, ie. 2t <<z or 2> 2 > 0 All convex
linear combinations of {* and ¢? satis{y the convex posi-
tivity and radial derivative constraints since {* and ' both
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do. In particular, {" = al’+ (1—a)* € §' for a =
(z'=z*)/(z%-z*) € [0,1) because then ! = az! +
(I-a)z* and Z, [¢] is linear in . The misfit functional

1 [¢] is convex, so by definition
wlt'l=ulag? + (-a)g*l
< apl’l + (-adulp®)
< aplt'l+ Q—a)ulz*)
<aplt'l+ Q-a)ulg'l = ult']

. .1 e
L' was defined to be the model in § that minimized r [¢]
so we have reached a contradiction. Figure 1 is a
representative plot of u as a function of .

APPENDIX B: NUMERICAL IMPLEMENTATION OF QP

Our FORTRAN implementation of QP is based on the
algorithm NNLS [Lawson and Hanson, 1974]. Nonnega-
tive least squares (NNLS) solves the problem

mir‘1 HA-x — bl

X2
where x € R, b € R” and 4 is a matrix of m rows and {
columns. NNLS is a tremendously robust program even
when a large number of variables are used, so much so
that SPMO used a weighting scheme similar to the one we
will describe to code LP by simulating linear programming
with NNLS.

To find the finite-dimensional approximation to the best
fitting model £*. we pass NNLS the following matrix A

! 1

and the vectorb:

/ is the L by L identity matrix. where L is the number of
basis functions. The second / matrix is used to introduce
a set of L positive slack variables that impose upper
bounds on the coefficients in the basis expansion (see
Bazaraa and Shety [1979], for « discussion of slack vari-
ables). The diagonal matrix of weights, H', accounts for
the different  standard  deviations of the data
W, = {1l/a,.i1=j. 0otherwise ]. The matrices 7 and X
map the coefficients of the basis expansion for { into their
Tip) and Y{(p) predicions (for the cxact expressions
using the 1/ v basis functions. see the definitions of 7, and
X, in the fourth section of SPMQO). We bound the
coefficients of the model to enforce the radial derivative
inequality constraint with the vectore = (a.a....a) €
R’ . where a is the radius of the body of interest (here
3480 km. the core radius). The small positive constant y
downweights fitting the data versus satisfving the radiai
derivative constraints.  (The radial derivative inequalities
are then satisfied almost exactly.) The sample means of
the data comprise the vector d. The first £ clements of




o

STARK AND PARKER VELOCITY BOUNDS FROM STATISTICAL DATA 2719

the unknown vector x are the coefficients of the basis
expansion we want; the latter L are slack variables men-
tioned above. which are needed to imp. 2 the radial
derivative inequality constraints. NNLS automatically
forces the unknown to be nonnegative. This in turn
ensures that {(v) 2 0 through our choice of basis func-
tions. In general, the radial derivative constraints will be
violated slightly since NNLS minimizes the two norm of
the misfit to b, however, with y = 10 ' they were never
violated by more than a part in 10'' in our applications.
Once we have found the best fitting model, we may con-
strain that the model to attain the depth - at velocity v, by
adding to 4 a row that is the finite-dimensional represen-
tation of z, [-] (see the expression for Z,, in the same sec-

tion of SPMO) and adding z as a corresponding element
of b. For numerical stability it is important that this new
row be inserted above the rows downweighted by y [Law-
son and Hanson, 1974]. A priori all we know about the
misfit as a function of the constraint depth is that it is
monotonic about the best fitting depth. We used a bisec-
tion method to find = such that the minimum of x [¢] over
§¢ is equal to M* because it is guaranteed to converge.
More sophisticated search algorithms would probably not
increase the efficiency much since the misfit is so flat near
the best fitting depth (Figure 1). The iteration involved in
the bisection and the large number of points needed for
an accurate description of the bounds make the computa-
tional requirements of the method fairly heavy compared
with LP.
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